IoT を用いた水道使用時の音と振動による高齢者見守りに関する研究 Study on the elderly monitoring by sound and vibration when using water supply using IoT

○奥村 大樹 (大阪電気通信大学) 添田 晴生 (大阪電気通信大学)

Taiki OKUMURA*1 Haruo SOEDA*1

*1 Osaka Electro-Communication University

To watch over the elderly by IoT, we focused on the use of water supply and conducted research on watching using vibration sensors and sound sensors. Experiments will be conducted on two types of sinks, one made of stainless steel and the other made of enamel, and whether they can be used for monitoring. As a result, the vibration sensor detected vibration when attached to the lever handle. The sound sensor detected sound when attached to a stainless-steel sink. It was found that the sound sensor is more effective than the vibration sensor in monitoring when the water supply is in use.

1.はじめに

現在、我が国の高齢者人口は増加し、それに伴い孤独 死も増加傾向にある。孤独死における体調変化の前兆を 発見する為に IoT を用いた見守り技術の開発が求められ る。しかし正確な情報を得る為に設置するセンサが多く なり得られる情報量は増えるが、それに対応して見守ら れる側のプライバシー懸念も大きくなる問題がある。そ こで、最低限の情報取得量で効果的に見守りが行えるよ う、人が生活する上で欠かす事のできない水道使用に着 目する。

水道使用による見守りには、スマート水道メーターを 活用した研究¹がある。これはスマート水道メーターに より得られるリアルタイムの水道使用データを収集、分 析し水道の連続使用・不使用時間から見守りサービスと しての活用の可能性を見出している²。他にも、水道メ ーターから得られる水道使用状況データによる一人暮ら し高齢者見守りサービス「KIZUKI」³が導入されてい る。見守り対象者の自宅に専用水道メーターと通信装置 を設置し、クラウドサービスを活用して見守りを行って いる。これらのサービスでは、どちらも水道メーターを 設置するための専門の工事が必要であり個人が容易に設 置できるものではない。

そこで本研究では、専門の工事を必要とせず家庭で簡 単にできる見守りとして、水道使用を振動で検知する方 法と音で検知する2種類の方法で研究する。センサによ って得られた水道使用データをクラウドに送信するシス テムを構築し、それらが見守りに活用可能であるか検討 することを目的とする。

2. 使用機器

本研究では、マイコンとして Fig.1の「ESP32-DevKitC」 を使用する。Wi-Fi 通信機能に加え Bluetooth 通信機能が 搭載されている。内蔵の AD コンバータは 0~3.3V の電圧 が入力できる。これをUSBケーブルでパソコンと接続し、 プログラムを作成してマイコンに動作を命令できる。

また振動センサとして、Fig.2 のピエゾフィルムセンサ 「Piezo Film Senser 1005940-1」を使用する。これは圧 電効果を使用したアナログセンサであり、センサ自体に 電源は必要ない。電圧感度は 1100mV/g であり、それを ESP32 にて 0-4095 の値で出力する。

また音センサとして、Fig.3の「VKLSVAN Sound Senser Module」を使用する。デジタルセンサであり、周囲の音の 強度が設定した閾値に達しない場合、高レベルである1 を出力する。閾値に達した場合、低レベルである0を出 力する。閾値は音センサ内のボリュームで調整できる。本 研究では、感度の調整を行った結果、印が最も左下にある 状態を0度とし時計回りに回し132度のところに調節し ている。

Fig.1 ESP32-DevKitC

Fig.2 Piezo Film Senser 1005940-1

Fig.3 VKLSVAN Sound Senser Module

3.実験

3.1 実験概要

各センサから得た出力値を ESP32 に通しインターネット上のクラウドサービス「Ambient」に送信した。Ambient は、IoT データの可視化サービスで、マイコンから送信されたデータを受信しグラフ化することができる。

マイコンと各センサとは、ジャンプワイヤによって接

続する。振動センサと音センサの配線とマイコンの接続 についてはそれぞれ Table.1、Table.2 に示す。

3.2 振動センサを用いた実験

(1) 実験条件

本研究では、2種類のシンクに対して、振動センサを用 いて実験を行った。使用したシンクはステンレス製の実 験室シンク、ホーロー製の自宅シンクである。実験室と自 宅のシンクの詳細はそれぞれ Table.3、Table.4 に示す。セン サ取り付け位置は実験室、自宅シンクともに吐水口先端 部、シンク裏面、レバーハンドル先端部の3カ所として 検討した。設置の様子はそれぞれ Fig.4~Fig9 に示す。

実験は全て5分間で行う。水道開放の時間は、吐水口 先端部・シンク裏面の2カ所では、実験室シンク・自宅 シンクどちらについても1分間水を流さず、3分間水を 流し、再度1分間水を流さない時間を設ける。センサの レバーハンドル設置時については2種類どちらのシンク においても、5分間の間に1分毎に蛇口の開閉を繰り返 す。レバーハンドルは、普段使用しているハンドルをひね る角度を測り、実験室シンクは30度、自宅シンクでは15 度とする。センサは0.5秒間隔でデータを検知するよう プログラムを行う。

(2) 実験結果

結果として、実験室シンク、自宅シンクともに、吐水口 先端部、シンク裏面にそれぞれ振動センサを設置しても、 振動を検知することはできなかった。おそらく吐水口先 端部、シンク裏面ともにほとんど振動は発生していない ためと考えられる。Fig.10、Fig.11にそれぞれ、実験室と自 宅に対して、水道のレバーハンドルに設置された振動セ ンサのデジタル出力値を示す。

Table.1 Connecting Sensor1

ESP32	振動センサ
39	+ビン
GND	ーピン

Table.3 Sink in the lab

唱	約 80 cm
奥行き	約 50 cm
高さ	約 25 cm
材質	ステンレス

Table.2 Connecting Sensor2

ESP32	音センサ
15	OUT
3V3	VCC
GND	GND

Table.4 Sink at home

唱	新J75 cm
奥行き	約 60 cm
高さ	約 25 cm
材質	ホーロー

Fig.4 Vibration sensor installed at the tip of the spout (lab)

Fig.5 Vibration sensor installed on the back of the sink (lab)

Fig.6 Vibration sensor installed at the tip of the spout (home)

Fig.7 Vibration sensor installed on the back of the sink (home)

Fig.8 Vibration sensor installed on lever handle (lab)

Fig.9 Vibration sensor installed on lever handle (home)

Fig.10 Digital output results of the vibration sensor (lab, Installed on lever handle)

Fig.11 Digital output results of the vibration sensor (lab, Installed on lever handle)

(3) 考察

振動センサでの水道使用における見守りは、水の流れ の振動が検知されず、困難であると判断した。しかし、人 の手による振動は検知する場合があり、レバーハンドル に取り付けた際に振動の値を検知した。振動センサは、水 の流れではなく蛇口の開閉の検知に使用できる可能性が ある。

3.3音センサを用いた実験

(1) 実験条件

振動センサと同様に、音センサを用いて実験を行った。 設置の様子はそれぞれ Fig.12~Fig.15 に示す。

(2) 実験結果

音センサは通常時 1.0 を出力し、音を検知した場合 0 を出力する。Fig.10~Fig.11 にそれぞれ、実験室と自宅に対して、吐水口先端部とシンク裏面の出力値を示す。

実験室ステンレス製のシンクでは、吐水口先端部、シン ク裏面どちらにおいても、まばらではあるが音の検知が されている。自宅ホーロー製シンクでは、蛇口を開放して いる時間であっても音の検知をしない時間がほとんどで あった。

Fig.12 Sound sensor installed at the tip of the spout (lab)

Fig.13 Sound sensor installed on the back of the sink (lab)

Fig.14 Sound sensor installed at the tip of the spout (home)

Fig.15 Sound sensor installed on the back of the sink (home)

Fig.16 Sound sensor output result (lab, Installed on tip of the spout)

Fig.18 Sound sensor output result (home, Installed on tip of the spout)

Fig.19 Sound sensor output result (home, Installed on the back of the sink)

(3) 考察

ステンレス製のシンクでは吐水口先端部とシンク裏面 どちらであっても水道使用状況が判別しやすく見守りに 使える可能性が十分にある。

ホーロー製のシンクについては、吐水口先端部、シンク 裏面どちらも水道使用中であることの判別は難しい。

2つのシンクで音の検知に違いがあることについて、音 センサは吐水口からシンクへ流れ出す水の音ではなく、 流れ出た水がシンクにぶつかり響いた音を検知している のではないかと考えられる。音センサがどの音を検知し ているのか解明する必要がある。

4. 二つのセンサ比較

音センサでの水道使用における見守りは、振動センサ と比べ水道使用間の検知が容易であると考えられる。ま た、音センサは水道不使用時の音の検知も少ないので、水 道使用のタイミングが判別することが可能である。した がってゆるやかな見守りを行う上では十分に音センサが 活用できると判断した。

5.課題

振動センサにおいては、レバーハンドルの操作による 振動検知としての実験を行ったが、加速度センサ活用の 可能性が考えられ、加速度センサとの比較が必要となる。

音センサにおいては、水道使用中のシンクにおいてど の音を検知しているのか識別し、いかなるシンクでの見 守りができるよう工夫する必要がある。

6.おわりに

本研究では水道使用を判別する為に振動センサ・音セン サを2種類のセンサで見守りを行えるか検討を行った。 振動センサにおいては水の流れの振動を検知するという よりは人の手を加えた結果の振動検知の可能性がある。 音センサにおいては、ステンレス製のシンクでは水が当 たる音が響き検知しやすく、ホーロー製のシンクでは水 が当たる音が響かないため検知しにくいという結果とな った。

参考文献

- 白波瀬武志 木下智史 森本賢 西浦康彦 生島康教 土 山俊司、スマート水道メーターによる使用量データを活用し た見守り・ヘルスケアサポートへの適用性に関する研究 令 和元年度全国会議(水道研究発表会,pp678-679,2019年
- 2) 木下智史 白波瀬武志 森本賢 西浦康彦 生島康教 土 山俊司、スマート水道メーターによる使用量データを活用し た見守り・ヘルスケアサポートへの適用性に関する研究(II)、 令和2年度水道研究発表会、pp530-531、2020年
- 3) 佐野武,水道の使用状況による見守り,ひと見守りテクノロジー 遠隔地の高齢者を中心とした、異変察知の機器開発から各種事例、次世代展望まで,株式会社エヌ・ティー・エス,pp139-148,2017年

非住宅建築物における外皮・設備設計仕様の解明と 省エネ基準引き上げによる技術変化の考察

Technical Changes Associated with Enhanced Energy Consumption Efficiency Standards for Non-Residential Buildings

○篠 原 里 穂 子 (大阪大学) 山 □ 容 平 (大阪大学)

宮田征門(国土交通省国土技術政策総合研究所)内田英明(大阪大学)下田吉之(大阪大学)

Rihoko SHINOHARA*1 Yohei YAMAGUCHI*1

Masato MIYATA*2 Hideaki UCHIDA*1 Yoshiyuki SHIMODA*1

*1 Osaka University *2 National Institute for Land and Infrastructure Management

This study was conducted to quantify what technological changes an increase in energy conservation standards would bring about and how much CO_2 emissions could be reduced as a result. Cluster analysis was used to categorize buildings by similar characteristics of envelope and equipment design specifications. The technical changes associated with the increase in energy conservation standards will be discussed by comparing the characteristics of the exterior skin and equipment design specifications of each cluster. In addition, the probability of belonging to a cluster is calculated based on building attributes such as location and size.

はじめに

2021 年に我が国で閣議決定された地球温暖化対策計 画¹は業務部門における2030年度までの温室効果ガス排 出量を 2013 年度比 51%とする削減目標を定めている。 2050 年までにカーボンニュートラルの実現を目指して おり、この排出量削減目標の強化が論じられるなど、建 築物の温室効果ガス排出量の削減は喫緊の課題となって いる。これらの目標を達成するため、2017年には建築物 のエネルギー消費性能の向上に関する法律(建築物省エ ネ法)²⁾が施行され,延床面積2,000 m²以上の新築非住宅 建築物を対象とした省エネルギー基準の適合義務化や、 ネット・ゼロ・エネルギービルの認証等が開始された。 改正建築物省エネ法が2021年4月に施行され,省エネル ギー基準の適合義務化の対象が延床面積 2,000 m 以上か ら300 m²以上へと拡大されたことに加え,2024年度以降, 適合義務化が先行している延床面積 2,000 m²以上の非住 宅建築物の省エネルギー基準が引き上げられることが決 定している³。省エネルギー基準では、エネルギー性能 指標として BEI (Building Energy Index) が用いられてい るが、本研究が対象とする事務所ビルは、基準強化によ ってBEI ≦ 1.0からBEI ≦ 0.80に引き上げられる予定 である。

省エネルギー基準の引き上げによる効果を評価するた めには、データに基づいて建築物の実態を詳細に把握す る必要がある。建築物のエネルギー性能や採用技術に関 して、客観的な根拠データを得るための実態調査は多数 行われている。国土技術政策総合研究所では、今後の更

なる建築物の省エネルギー化のための施策検討に必要な 実態データの収集を目的とし、非住宅建築物の省エネル ギー基準申請データを2018年より収集している。本申請 データは建築物省エネ法が定める省エネルギー基準への 適合性を判定するためのプログラム⁴⁾ (Web プログラム) の入出力データであり、基準適合評価結果に加えて、建 築物の外皮・設備設計仕様に関する詳細なデータが含ま れている。延床面積 300 m²以上の非住宅建築物について は省エネルギー基準の適合義務が課せられているため, 当該データは新築・増改築が行われる延床面積300 ㎡以 上の非住宅建築物の全数調査が可能であり、また、Web プログラムの入出力データは所管行政庁もしくは民間機 関の審査を受けた信頼性の高い情報である。宮田ら⁵は このデータを詳細に集計し、新築事務所ビルを対象とし て, BEIm の水準, 太陽光発電設備の有無により対象建 築物をグループ分けし、各グループにおいて採用されて いる建築物の標準的外皮・設備設計仕様を明らかにした。 鳴川らのは、事務所・宿泊・医療福祉・小売用途の非住 宅建築物を対象として、ロジスティック回帰分析を行い、 施設規模や立地等の建物属性による設備設計仕様の階級 別採用率を定量化した。しかし、外皮・設備設計仕様が どのような建物がどれほど存在するかは解明されておら ず、省エネルギー基準引き上げによって建築物の外皮・ 設備設計仕様がどのように変化していくか明らかでない。 このような背景から、本研究は、建築省エネ法における 省エネルギー基準の引き上げがいかなる技術変化をもた らすか考察することを目的とする。

1. 研究の方法

1.1 分析に用いたデータ

本研究では非住宅建築物省エネルギー基準申請データ を用いた。2018年度に所管行政庁等に適合性判定や届出 の申請があった事務所建築物のうち,評価法がモデル建 物法であるデータ1175件を分析対象とした。対象データ には建築物延床面積,用途,地域区分,建築物のエネル ギー性能指標,設備毎のエネルギー性能指標,外皮・設 備設計仕様が含まれている。地域区分は建築物省エネ法 における気候区の地域区分により区分されている。

前処理として BEIm について 3 標準偏差の範囲外を外 れ値として扱い21 件を除外し,残りの標本を平均値が0, 標準偏差が1となるように標準化して用いた。

1.2 分析方法

BEIm は空調,給湯,照明,換気,外皮性能それぞれ の仕様により決まる。その組み合わせは多様であるが, 外皮・設備設計仕様がどのような建物がどれほど存在す るか明らかにするため,これらの性能を表す BEImAC, BEImHW, BEImL, BEImV, BPIm に基づいて標本を分 類する。一方で,各変数には有意な相関が観測されたこ とから,主成分分析を行い次元削減を行った。

次に、外皮・設備設計仕様の特徴により分類するため K-means 法によるクラスター分析を行った。クラスター 数の決定にはエルボー法を用いた。エルボー法とは、ク ラスター数に応じてデータからクラスター重心までの距 離の二乗和(SSE)を計算してグラフ化し、その形状か ら最適と思われるクラスターの数を選択する手法である。

最後に、ロジスティック回帰分析を行い、前のステッ プで得られた各クラスターへの所属確率を算出する多項 ロジスティック回帰モデルを作成した。回帰モデルの説 明変数は建物の立地地域、規模といった建築属性とし、 得られた回帰モデルを用いて、立地、規模などの条件に よりクラスターの所属確率がどのように変化するか分析 した。Table.1 に説明変数を示す。延床面積、窓面積率、 延床面積当たりの外皮面積(Shape factor)は標準化した 値を用いた。

T 1 1 1	D 11 /	c	1	•	1.
Table. I	Predictors	ot	logistic	regression	analysis
1001011	realecorb	01	rogiotic	regression	anayons

Items	Objective variables			
Cold	Dummy variable of cold region (the regions 5 to 8			
	are 0, whereas the regions 1 to 4 are 1)			
Hot	Dummy variable of warm region (the regions 1 to 6			
	are 0, whereas the regions 7 and 8 are 1)			
Total floor area	Standardized building total floor area			
Window area	Standardized window area rate			
rate				
Shape factor	Standardized envelope area per total floor area			
Bathroom	Dummy variable of bathroom (not having a			
	bathroom is 0, having a bathroom is 1)			
Parking	Dummy variable of parking (no parking is 0,			
	parking available is 1)			

2. 結果

2.1 主成分分析

事務所の設備の BEIm・BPIm を変数とした主成分分析 の累積寄与率を Fig.1 に示す。第3主成分までの累積寄 与率が約70%となるため,第3主成分までを分析に用い ることとした。

主成分と変数の相関行列を Table.2 に示す。第1主成分 は BEImHW 以外の変数と正の相関が見られたため、空 調、照明、換気設備のエネルギー性能、外皮性能を示し ており、主成分得点が小さいほどエネルギー性能が高い ことを表す。第2 主成分は BEImHW と正の相関が見ら れたため給湯設備のエネルギー性能を示しており、主成 分得点が小さいほどエネルギー性能が高い。第3 主成分 は BPIm と正の相関が、BEImAC と負の相関が見られた ため外皮性能と空調のエネルギー性能を示している。

Table.2 Correlation between predictors and principal components

	PC1	PC2	PC3
BEImAC	0.44	-0.15	-0.79
BEImHW	0.15	0.88	-0.05
BEImL	0.41	0.34	-0.02
BEImV	0.58	-0.29	0.09
BPIm	0.52	-0.07	0.60

2.2 クラスター分析

Fig.2 にクラスター分析のエルボー図を示す。横軸はク ラスター数,縦軸は各クラスターの重心から各点までの 距離の二乗和(SSE)である。SSEの減少がゆるやかに なる点が最適なクラスター数であるので,クラスター数 は5が適していると考えられる。

Fig.2 Elbow curve

Fig.3 に事務所におけるクラスター分析の結果を示す。 主成分から解釈すると、PC1 が高い Cluster1, 2, 4 は比 較的エネルギー性能が低い建物群である。Cluster1 は空 調の BEIm が小さく、Cluster2 は BPIm が小さく、Cluster4 は空調の BEIm と BPIm が小さい傾向にある。Cluster3, 5 はエネルギー性能が比較的高い物群であり、Cluster3 は 給湯設備の BEIm は大きいが、その他の設備の BEIm と BPIm が小さい傾向にあり、Cluster5 は BPIm と設備の BEIm が小さい傾向にある。このように外皮・設備設計 仕様により標本を分類することができた。

2.3 クラスター別の BE Im の分布

クラスターごとの BEIm の頻度分布を Fig.4 に示す。事務所では省エネルギー基準が BEIm ≦0.80 に引き上げられるが、Cluster5 は BEIm ≦0.80 の範囲にあり、引き上げ後の省エネルギー基準を満たしている。Cluster1、3 は BEIm が 0.80 を超えるものがある程度存在するため、省 エネルギー基準引き上げによる設備設計仕様の技術変化 によりクラスターの分布が変化すると考えられる。 Cluster2, 4 は大部分が BEIm>0.80 の範囲にあるため, 他のクラスターに移動する可能性が考えられる。

Fig.4 Distribution of BEIm

Fig.5 に各クラスターにおける変数の頻度分布を示す。 地域区分ごとに色を塗り分けている。引き上げ後の省エ ネルギー基準を満たしている Cluster5 はすべての変数が 低い領域での頻度が高く,設備・外皮仕様のエネルギー 性能が高い。Cluster1 は換気設備の BEIm と BPIm が他の クラスターよりも大きく,換気設備のエネルギー性能と 外皮性能が低い。Cluster3 は BEImHW が他のクラスター よりも大きく,給湯機のエネルギー性能が低い。

クラスターの大部分が BEIm>0.80 の範囲に存在する Cluster2 は、EImAC が大きいため、調のエネルギー性能 が低く、空調のエネルギー性能を向上させることで Cluster5 に近づくと考えられる。Cluster4 は BEImL が大

Fig.5 Distribution of BEIm of equipment and BPIm

きく照明のエネルギー性能が低い。照明のエネルギー性 能を向上させることで Cluster5 に近づくと考えられる。 引き上げ後の省エネ基準を満たしている Cluster5 と,ク ラスターの大部分が BEIm >0.80 の範囲に存在し、空調 の BEIm が大きい Cluster2 を比較すると、Cluster2 は Cluster5 よりも冷暖房の熱源容量が大きいことがわかっ た。また、同じくクラスターの大部分が BEIm >0.80 の 範囲に存在し、照明の BEIm が大きい Cluster4 を Cluster5 と比較すると、Cluster4 は単位床面積当たりの照明消費 電力が大きいことが分かった。単位床面積当たりの照明 の消費電力が 10 W/m²以下の場合 LED 照明が利用されて いると考えられるが Cluster4 は 10 W/m²以上であるので LED でない照明が使用されていると考えられる。

2.4 ロジスティック回帰分析

ロジスティック回帰モデルにより推計されたクラスタ ーへの所属確率と建物属性の関係を Fig.6 に示す。立地 地域が寒冷地であれば冷暖房の熱源容量が大きい Cluster2 となる確率が高くなり、給湯機の熱源効率が大 きい Cluster3 となる確率は低くなる。温暖地であれば反 対の結果となる。延床面積が大きくなるにつれて換気設 備の消費電力が大きい Cluster1 への所属確率が高くなり、

Fig.6 Change in the probability of being included in each cluster

Cluster3 への所属確率は低くなる。また,窓面積率が小 さいほど Cluster3 となる確率が高くなり,LED 照明が用 いられていない Cluster4 となる確率は低くなる。Shape factor は小さくなるにつれて Cluster3 への所属確率は高 くなり,引き上げ後の省エネルギー基準を満たす Cluster5 への所属確率は低くなる。

3. おわりに

本論文は Web プログラムの入出力データをクラスタ 一分析し、省エネルギー基準引き上げによる外皮・設備 設計仕様の技術変化を考察した。事務所では省エネルギ ー基準引き上げ後の基準を満たす建物群はどの設備や外 皮においてもエネルギー性能が高いことが分かった。大 部分が BEIm>0.80 の範囲に存在する建物群は、冷暖房 の熱源容量が大きいもの、LED 照明が用いられていない ものであり、空調の熱源容量を小さくしたり、照明を LED に替えることで引き上げ後の基準を満たすように なると考えられる。今後の課題として、クラスターへの 所属確率と建物属性の関係を考察すること、本研究での 分析結果をもとに省エネルギー基準引き上げに伴う二酸 化炭素排出削減量を定量化することが挙げられる。

謝 辞

本研究は JSPS 科研費 20H02312 の助成を受けたものである。

参考文献

- 環境省:地球温暖化対策計画 2021.10(参照: 2023.2.9)
 https://www.env.go.jp/earth/ondanka/keikaku/211022.html
- 2) 国土交通省:建築物のエネルギー消費性能の向上に関する 法律 2015.7
 <u>https://elaws.e-gov.go.jp/document?lawid=427AC0000000053</u> 20220617 504AC000000069 (参照: 2023.2.9)
- 3) 国土交通省:大規模非住宅建築物の省エネ基準の引き上げ について 2021.8

https://www.meti.go.jp/shingikai/enecho/shoene shinene/sho en ergy/kenchikubutsu_energy/pdf/016_05_00.pdf (参照:2023.2.9)

- 建築研究所:建築物のエネルギー消費性能に関する技術情報
 <u>https://www.kenken.go.jp/becc/</u>(参照: 2023.2.9)
- 5) 宮田征門,平川侑:省エネ基準適合性判定プログラムの入 出力データを活用した非住宅建築物の外皮・設備設計の実 態分析(その1):新築事務所ビルを対象とした省エネ基準 評価結果別の標準的な設計仕様の解明,日本建築学会環境 系論文集,第85巻,第777号,pp.859-869,2020.11.
- 6) 鳴川公彬他3名:省エネ基準適合性判定プログラムの入出 カデータを活用した非住宅建築物の外皮・設備設計の実態 分析(その2):ロジスティック回帰による規模・立地別の 設計仕様の分析、日本建築学会環境系論文集、第87巻、 第797号、pp.448-459、2022.7.

Research on quantification of the effects of compliance with residential energy conservation standards by Total Residential End-use Energy Simulation model

○江守 勇貴(大阪大学)
 下田 吉之(大阪大学)
 藤原 みさき(大阪大学)
 Yuuki EMORI^{*1} Yoshiyuki SHIMODA^{*1} Misaki FUJIWARA^{*1}
 *¹ Osaka University

One of the challenges of TREES, which allows for realistic estimates in the residential sector, is the lack of representation of residential energy efficiency standards in the 'energy efficiency of housing'. This standard consists of thermal insulation standards and primary energy consumption, which represent the overall energy performance of a house. The aim of this study is to review the effectiveness of the measures by adding a primary energy consumption standard to the conventional method that deals only with the thermal insulation standards.

1. 緒論

2021年10月に政府が決定した第6次エネルギー基本 計画¹¹において、家庭部門では2030年度における温室効 果ガス排出量を2013年度比で約66%削減するという削減 目標が定められている。この目標の確実な達成には、各削 減対策の毎年の進捗状況と対策効果の定量的な評価が必 要である。本研究室では、世帯や地域による多様性や経年 的な気象や住宅の変化を考慮可能な家庭部門エネルギー 最終需要モデル(TREES)が開発されているが、家庭部門 における対策効果をデジタルツインで現実的に推計する ことが可能であるこのモデルは、対策の進捗状況の確認 と将来のエネルギー計画を立てるのに十分に役立つ。

TREES による政策評価の課題の一つに、「住宅の省エ ネルギー化」を評価するための、住宅省エネルギー基準に 準拠した新築住宅モデルが構築できていないことがある。 この基準は住宅の総合的なエネルギー性能を表す一次エ ネルギー消費量と外皮熱性能の二本柱の基準で成り立つ。 しかし、従来の TREES における推計方法は、基準適合の ための省エネルギー手法の導入組み合わせの複雑さを鑑 みて、一次エネルギー消費量基準を導入せず、外皮基準適 合住宅のストックを増やすことで新築住宅の省エネルギ ー基準準拠による対策効果を計算している。これを政府 想定と同じ一次エネルギー消費量と外皮性能の二本柱の 評価方法へと変更し、対策の省エネルギー効果を正しく 評価することを本研究の目的とする。また、従来のモデル で得られた推計結果と本研究で正しく評価した結果を比 較し、従来モデルの信頼性を確認することも目的とする。 加えて、本研究では「住宅の省エネルギー化」以外の対策 効果も評価し、2030年における全国のエネルギー消費量 と温室効果ガス排出量の推計を行う。

2. TREES モデルの概要

TREES モデルは、世帯及び世帯員の属性、機器の保 有状況、住宅仕様、居住者行動、気象条件などの多様な 条件を考慮した、家庭部門における用途別、エネルギー 源別のエネルギー消費量の現実的な推計が可能であるボ トムアップ型のシミュレーションモデルである。また、 暖冷房のエネルギー消費を熱負荷計算に基づいて推計し ている点から、断熱効果とルームエアコンディショナー のエネルギー性能における評価を整合的に行うことがで きる。これらの特徴によって、国家スケールで世帯ごと のエネルギー需要特性の多様性の再現が可能である。 TREES モデルの概要を Fig.1 に示す。

Fig.1 Summary of TREES

3. 住宅省エネルギー基準の内容と基準適合設備機器

住宅省エネルギー基準はFig.2のように、順次基準の 改正・強化が行われ、現在最新の平成28年基準では、 外皮熱性能に関する基準と住宅の総合的なエネルギー性 能を表す一次エネルギー消費量基準の二本柱の基準を定 めている。この住宅省エネルギー基準は2025年から新 築住宅に義務化され、本研究でその対策効果を定量化す る。

Fig.2 Changes in residential energy conservation standards

本研究では、住宅省エネルギー基準に適合する新築住 宅をモデル化した。住宅省エネルギー基準に適合するた めには、外皮熱性能基準と一次エネルギー消費量基準を 満たす必要があり、外皮熱性能基準については平成11 年基準を満たすことが条件となっている。一次エネルギ ー消費量基準は暖冷房・換気・照明・給湯部門の合計一 次エネルギー消費量で定められており、これに適合する ための各部門における省エネルギー手法の組み合わせは 複数考えられる。本研究ではこの導入組み合わせについ て、各部門で BEI が1.0 となるような設備機器を設定 し、全体でも基準に適合するように住宅モデルを構築し た。BEI とは、設計一次エネルギー消費量を基準一次エ ネルギー消費量で除して得られる値であり、値が1.0 以 下であれば基準に適合しているといえる。

本研究では、暖冷房や給湯といった各部門で基準一次 エネルギー消費量に適合するために導入が必要な設備機 器を「エネルギー消費性能計算プログラム【住宅版】| ²⁾ を用いて決定する。プログラムの計算方法は平成28年 省エネルギー基準に準拠している。エネルギー消費性能 計算プログラムでは、住宅の建て方や床面積、地域区分 といった住宅モデルを入力することによって対象住宅の 基準一次エネルギー消費量を計算することが可能であ る。これに加えて、対象住宅の外皮性能と各部門の設備 機器・省エネルギー手法を入力することで設計一次エネ ルギー消費量を出力することができる。このプログラム を用いて、各部門においてどのような設備機器が基準に 適合するかを確認した。得られた結果の例として、給湯 部門における設備機器の決定を Fig.3 に示す。給湯用途 の場合、潜熱回収型ガス給湯器が基準一次エネルギー消 費量の値に最も近いため、これを基準適合のための設備 機器として設定した。

給湯部門と同様に設定した各部門における基準適合の ための設備機器を Table.1 に示す。暖冷房部門における ルームエアコンディショナーには3 段階の性能区分が設 定されており、(い)・(ろ) はより高性能な2 区分に該 当する。給湯部門は Fig.3 で示したように潜熱回収型ガ ス給湯器を、換気部門では壁付け第2・3 種換気設備、 照明部門では LED と蛍光灯の組み合わせ導入とする。

Table.1 Standard-compliant equipment in each sector

Target Applications	Equipment for compliance with standards			
Thermal insulation	1000 Standard			
performance	1999 Standard			
Heating and cooling	Air conditioner performance			
	category (い)・ (ろ)			
Hot-water supply	Condensing gas water heater			
Ventilation	Wall-mounted Type 2 and 3			
Lighting	Combination of			
Lighting	LED and fluorescent lamps			

4. 省エネルギー基準に適合した新築住宅のモデル化

本研究では、住宅省エネルギー基準に適合した新築住 宅をモデル化するために、従来のTREESモデルでは行 われなかった新築住宅の分類を行い、独立して評価を行 う。TREESでは、経年的な熱性能世帯数割合の変化を 予測することが可能であり、これを用いて新築住宅の分 類を行う。外皮熱性能基準である平成11年基準の外皮 性能を持つ住宅の2013年から2030年にかけた増加数を 新築住宅と分類した。Fig.4に示すように、本研究にお ける2030年の推計では、全体の約19%を新築住宅と分

類した。

これらの新築住宅に Table.1 で示した設備機器を導入 し、住宅省エネルギー基準に適合するのと同等のエネル

ギー性能を持つものとした。

5. 評価を行う他の対策と住宅の省エネルギー化の関係

本研究では、新たな対策評価を行う「住宅の省エネル ギー化」に加えて他の政府対策による省エネルギー効果 の評価も行い、2030年における消費エネルギー量と二酸 化炭素排出量を推計する。このために、本研究で推計の 対象とするケースは以下の2つである。

- 2013 年ケース:温室効果ガス・エネルギー消費量の 削減目標の基準年である 2013 年を対象とするケー ス
- ② 2030年対策実行ケース:2030年において、第6次 エネルギー基本計画で掲げられている対策を実行し たケース

本研究で評価の対象とする政府対策は「住宅の省エネ ルギー化」に加えて、「高効率給湯器の導入」と「高効 率照明の導入」、トップランナー制度による「機器の省 エネ性能向上」である。本研究では政府の計算方法と同 様に、新築住宅に導入する高効率な給湯器と照明設備の 導入による省エネルギー効果は「住宅の省エネルギー 化」に含めて定量化する。

それぞれの省エネルギー対策について、政府が掲げる 対策導入量に可能な限り近づけたケース別の設定条件を Table2 に示す。「住宅の省エネルギー化」を除いたそれ ぞれの設定条件について以下に述べる。

「高効率給湯器の導入」では、2030年における潜熱回 収型給湯器とヒートポンプ給湯器、燃料電池の導入目標 台数が設定されている。新築住宅で住宅省エネルギー基 準を達成するために導入する給湯器は、Table.1で潜熱 回収型ガス給湯器と設定している。そのため、新築住宅 数分の潜熱回収型ガス給湯器を目標台数から差し引き、 残りの台数を2013年以前から存在する既存住宅に設備 改修として導入する。また、潜熱回収型給湯器以外の高 効率給湯器は既存住宅で起こる設備改修として導入され るものとした。

「高効率給湯器の導入」では、2030年までにLED照 明の100%導入を目標としている。これに対して、 Table.1で定めた基準適合のための照明設備の導入方法 はLED照明と蛍光灯の組み合わせであり、「高効率照明 の導入」における目標に及んでいない。よって、本研究 では新築住宅における住宅省エネルギー基準への適合に 関する追加対策として、LED照明の完全導入も検討す る。

「機器の省エネ性能向上」では、トップランナー制度 によるテレビと冷蔵庫、ルームエアコンディショナー等 の機器における性能向上を目指している。テレビ及び冷 蔵庫に関しては、2021年省エネカタログ最高性能機器³³ が 2026年以降の平均性能になると想定して、過去の省 エネカタログをもとに消費電力を推計した。Table.2 で は、これらの機器性能について、各世帯が保有する1台 目の平均性能を記載している。

ルームエアコンディショナーに関しては、政府目標や 統計値⁴⁾に基づいて APF を設定し、省エネカタログやメ ーカーカタログ⁵⁾から機器性能を決定した。ここで設定 したルームエアコンディショナーの性能は、**Table.1** で 基準適合のために必要であると示した性能区分(い)・

(ろ)を満たすため、新築住宅にはこれらの設備機器を 導入する。また、既存住宅においても2030年までに全 て設備改修が起こり、同じ性能を有するルームエアコン ディショナーが導入されるとした。Table.2 では、最も 採用数が多い冷房能力 2.2kW のルームエアコンディシ ョナーの APF 値を記載している。

Table.2 Detailed conditions for each case

		2013	2030 Measures		
	Heat pump	4.42 million	15.9 million		
water heaters	Condonaing	4.49 million	newly: 10.1 million		
(units)	Condensing 4.48 million		already:20.4 million		
	Fuel cell	50 thousand	3 million		
L	ED	0%	100%		
	Television	157 W	74 W		
Annliance	Refrigerator	871 kWh/year	330 kWh∕year		
Appnance	Air Conditioner	27	5.2		
energy	APF	5.7	5.2		
enciency	PC	36.1 W	20.4 W		
	VTR equipment	35.7 W	26.4 W		

6. TREES モデルによる推計結果

本章では、これまでに示した設定条件をもとに推計を 行った結果を示す。

全国の新築住宅を対象に住宅省エネルギー基準に適合 させたときの二次エネルギー消費量の変化を Fig.5 に示 す。全部門において二次エネルギー消費量を削減することが可能であり、全体用途では28%の削減が見込まれることがわかった。特に、暖冷房部門のエネルギー削減率が最も大きく、47%であった。追加対策として照明設備すべてにLEDを導入した場合、更に2%の削減が得られた。

各省エネルギー対策による省エネルギー効果について、 従来モデルと本研究のモデルで得られた推計結果を Fig.6 (a), (b)で比較する。

Fig.6 (a) Comparison of secondary energy reductions between models

Fig.6 (b) Comparison of CO₂ emissions reductions between models

従来と本研究のモデルで推計された二次エネルギー削 減量と二酸化炭素削減量を確認すると、それらの結果に は殆ど差が無かった。各対策による高効率な設備機器を 導入する住宅について、従来モデルでは住宅特性を考慮 しながら無作為に選択していたが、本研究においては新 築住宅モデルにまとめて導入した。そのため、全体として の対策導入量は両モデルで同じであり、削減量も殆ど同 じとなった。これより、従来のモデルを用いた推計でも政 府の対策効果の総量を正しく推計可能であり、得られた 推計結果を信頼できることがわかった。

本研究で得られた 2013 年と 2030 年対策ケースの全国 二酸化炭素排出量を Fig.7 に示す。この図では、電気排出 係数変化を考慮しており、2013 年から 2030 年で 0.57[kg-CO2/kWh]から 0.25[kg-CO2/kWh]に変化することを考慮 している。但し、Fig.6 (b)では 2013 年の電気排出係数を用 いている。

Fig.7 より、家庭部門における 2030 年の温室効果ガス 排出量は 2013 年度比で 57%削減することが可能である ものの、政府目標である 66%の削減には届かないことが わかった。これより、今後は削減目標に達するために必要 な追加対策を検討しつつ、継続的な対策の進捗評価を行 っていく必要がある。

謝辞

本研究は、(独)環境再生保全機構の環境研究総合推進 費(JPMEERF20212005)により実施した。

参考文献

- 経済産業省資源エネルギー庁;
 2030 年度におけるエ ネルギー需給の見通し, https://www.enecho.meti.go.jp/category/others/basic_plan/
- 2) 一般財団法人住宅・建築 SDGS 推進センター;エネルギー消費性能計算プログラム【住宅版】
- 3) 経済産業省 資源エネルギー庁;省エネカタログ https://seihinjyoho.go.jp/frontguide/pdf/catalog/2021/catalo g2021.pd
- 経済産業省 資源エネルギー庁;エアコンディショナーの次期目標基準の方向性について(案) https://www.meti.go.jp/shingikai/enecho/shoene_shinene/s
- 5) DAIKIN;空調製品情報検索サイト, <u>https://d-</u> search.daikin.co.jp/open/top

温泉熱の面的利用システムに関する研究

-無断熱・直埋設方式の熱源水地域配管からの熱損失-

STUDY ON HEAT SOURCE WATER NETWORK SYSTEM UTILIZING UNUSED HEAT FROM HOT SPRINGS - EVALUATION OF THE AMOUNT OF HEAT TRANSFERRED BETWEEN FANCILITIES VIA THE NETWORK-PIPE-

○戴	錦承	(大阪市立大学)	鍋島	美奈子		(大阪公立大学	2)
西岡	真稔	(大阪公立大学)	中尾	正喜	(大)	仮公立大学)	
Jinch	eng DAl	^{[*1} Minako NABESHIMA ^{*2}	² Masatoshi	NISHIO	KA* ²	Masaki NAKAO	* ²
*1 Osaka City University *2 Osaka Metroplitan University							

A heat source water network system was proposed as a system that utilizes hot spring heat across the area. In order to reduce the initial cost of regional piping, it is necessary to consider in advance whether the heat source water piping with a low-temperature level needs insulation. In this study, we proposed an unsteady heat transfer model that approximates the thermal properties of soil, and evaluated the effects of different soil conditions on non-insulated direct-buried pipes. As a result, when the heat demand of a small-scale facility is increased in the piping of the non-insulated direct-buried system, the amount of heat acquired in the small-scale facility increases overall. And the received heat of a small-scale facility via the network in the non-insulated direct-buried system becomes almost the same value as the heat demand in the case with insulation.

1. はじめに

1.1. 背景

温泉大国である日本では、未利用エネルギーとして の温泉熱や排湯熱のポテンシャルは高い。しかし、温 泉街では高温の源泉井戸を保有し熱が余っている事 業者と、自前の源泉井戸がなく熱が足りない事業者が 混在している場合でも、地域全体で面的な再エネ熱の 有効活用を促進する取組みは進んでいない。柊本ら¹⁾ は温泉熱を面的に活用するシステムとして、各施設で のヒートポンプ給湯機の導入を前提とした無断熱・直 埋設シングルループ方式の分散熱源による熱源水ネ ットワークシステム(以降、熱原水 NMS と記す)を 提案し、その効果の試算を行った。結果として、温泉 (源泉及び排湯)の熱利用量の増加に伴って各宿の施 設内熱源水の温度が上昇し、一次エネルギー消費量が 削減され、SCOP が増加するという結果を示した。ま た、冬期では全ての条件において、熱源水 NWS は集 中型や個別給湯システムに対して一次エネルギー消

費量の削減効果があることを明らかにした。しかしな がら、検証に用いた NWS の数値シミュレーションモ デルについて詳細な検討がなされておらず、施設間の 融通熱量や配管熱損失について再検討が必要である。

1.2. 目的

本研究では、土壌の熱特性を近似する非定常伝熱モ

デルを Modelica 言語で記述し、熱源水 NWS の評価を おこなうための設備シミュレーションモデルに組み 込み、各施設および熱源水 NWS 全体の熱収支を明ら かにしたうえで、1 次エネルギー消費量、成績係数等 により評価する。

2. 熱源水ネットワークシステム概要

2.1. システム導入街区の基本状況

本研究では、10 軒の温泉宿が存在する仮想街区に熱 源水 NWS を導入した際の施設間熱融通量を分析する。 大規模な温泉宿と小規模の温泉宿の2種類、それぞれ 5 軒ずつ計 10 施設が接続する熱源水ネットワーク配 管モデルを構築し、全長 3.5km の配管ネットワークに 大規模宿と小規模宿を交互に等間隔で配置する

(Fig.1)。大規模宿のみ敷地内に源泉井戸を保有している。給湯熱需要量については、給湯熱需要量原単位に各宿の延床面積(大規模温泉宿11,500m²、小規模温泉宿2,160m²)を乗じて算出する²⁾。

2.2. 宿内システムの構成

各施設には、温泉や排湯と熱交換した熱源水を循環 させる施設内配管が設置され、熱交換器を介して余っ た熱が複数の温泉宿を繋いだ長さ 3.5 km の基幹ネッ トワーク配管(以降、基幹 NW と記す)を通じて他の 施設に融通され、ヒートポンプ式給湯機(以降、HP 給 湯機と記す)の熱源として利用するシステム(Fig.1) A-4 である。大規模温泉宿内のシステム(Fig.2)は排湯用 熱交換器、源泉用熱交換器、水熱源 HP 給湯機、上水 予熱用熱交換器、基幹 NW と熱授受を行う熱交換器と これらを繋ぐシングルループ配管で構成されている。 小規模温泉宿内のシステム(Fig.3)は大規模温泉宿内 から源泉用熱交換器を除いたシステムである。温泉熱 は当該宿内で優先的に利用し、余った熱を基幹 NW に 放出することを基本とする。

Fig.1 Block introduced heat source water network system

Fig.2 System diagram of large-scale facility

3. 熱源水ネットワークシステムの与条件

3.1. モデルの与条件

実測結果より、熱源水 NWS のシミュレーションモ デルの要素は戴ら²⁾と同様に設定する。本報では源泉 温度 53℃とし、大規模温泉宿では源泉は 45℃まで熱 利用可能として上水予熱をおこなう。熱交換後の源泉 は浴槽に投入され、オーバーフローの排湯は 38℃とす る。38℃の排湯からも熱回収を行う。

3.2. 埋設配管の熱損失計算

埋設配管の配管外表面から地表面までの土壌の熱抵 抗は Eq.1 で計算される (Fig.4)³⁾。本研究では、計算 を簡易化する方法として、ある埋設深さの配管を想定 し、 Fig.5 のように配管周囲の土壌厚さ分の熱抵 抗および熱容量のみを考慮する円筒モデルにより計 算をおこなう。Eq.1 からで求めた熱抵抗 R_s を Eq.2 に

空気調和・衛生工学会近畿支部

学術研究発表会論文集(2023.3.7) 代入し、Eq.3 より熱抵抗値が等しくなるように相当土 壤厚さΔrを決定する。従って、この円筒モデルの定常 特性は埋設配管と一致する。この円筒モデルを Modelica言語で記述し、すでに構築している設備シス テムシミレーションに組み込んだ。これにより、土壌 の非定常熱特性を考慮した熱源水温度の変化につい て従来の非定常計算方法(応答係数法など)より簡便 に検討することが可能になった。円筒モデルは配管周 りの土壌の計算範囲を相当土壌厚さに限定し、土壌表 面温度境界としているため、配管近傍の非定常伝熱の 精度が高いが、従来方法より非定常誤差が大きくなる と予想される。

$R_s = ln \left\{ \frac{2h_1}{d} + \sqrt{\left(\frac{2h_1}{d}\right)^2} - \right.$	Eq.1				
$R_s = \frac{\ln\left((d + \Delta r)/d\right)}{2\pi L \lambda_s}$				Eq.2	
$\Delta r = e^{2\pi L\lambda_s R} + \ln(d) - d$				q.3	
R_s : soil heat resistance	K/W	h_1 : burying depth		m	
λ_s : soil thermal conductivity	m				
Δr : equivalent soil thickness		m			

4. 土壌熱容量を考慮した土壌分割モデル

4.1. モデル構築

土壌分割モデルを Fig.6 のように三つの部分に分け て、それぞれを①地表面温度境界部分、②土壌分割部 分と③配管境界部分とする。①~③モデルの概要は以 下の通り。

- 地表面温度境界部分は土壌分割モデル上部の境 界条件、ここでは地表面温度を指定する。
- ② 土壌分割部分は境界条件として設定した温度または熱流を受けて、分布定数系の分割モデルにより土壌温度の収束計算を行う。
- ③ 配管境界部分は配管内の熱原水温度を土壌分割 モデルの下部境界条件にする。配管部分の材質の 熱抵抗によりの断熱計算もこの部分で計算する。

4.2. モデルの検証

建物の非定常熱負荷計算に用いられる応答係数法 (Response factor method)を埋設管路の非定常伝熱計 算に利用し、異なる土壌条件によるモデルの誤差評価 を行う。Table 1、Table 2 は吸熱と貫流それぞれの誤差 のRMSE と CVRMSE (Eq.8、Eq.9)を示す。全体的に 吸熱応答の誤差は小さいが、貫流部分の誤差が比較的 に大きい。しかし、熱源水 NWS の導入を想定した山 形県鶴岡市では地表面温度境界条件の一日最大温度 変化が約 1.5℃程度、埋設配管の温度変化が最大 10℃ 程度と予想されるため、貫流応答の誤差影響は小さい と考えられる。

5. 土壌条件による施設間融通熱量の比較

A-4 熱源水 NWS において、異なる土質条件による無断 熱、直埋設方式の配管への影響を評価する。土壌分割 モデルを熱源水ネットワークシステムに実装し、施設 間融通熱量の変化について比較分析を行う。想定する 各 Case の条件を Table 4 に示す。寒冷地の外気条件と して、拡張アメダス気象データ 2010 より山形県鶴岡 市の標準年データを用いる。

$c_{\rho}V_{n}\rho\frac{dT_{n+1}}{dt} = \frac{1}{R_{n}}(T_{n})$			Eq.4			
$c_{\rho}V_{i}\rho\frac{dT_{i}}{dt} = \frac{1}{R_{i-1}}(T_{i-1})$		Eq.5				
$i \in (2:n)$						
$c_{\rho}V_{n}\rho \frac{dT_{1}}{dt} = Qflow_{water} + \frac{1}{R_{1}}(T_{2} - T_{1})$					Eq.6	
$Qflow_{water} = \lambda_{pip} \times$	$(T_{water} - T_1)$)			Eq.7	
T: temperature	°C	Qflow : he	at flov	N	W	
water : water boundary	-	n : division	numl	ber	-	
c_{ρ} : specific heat	J/kgK	V : volume			m ³	
Δr : small radius	m	r_p : piping	radius		m	
λ : thermal conductivity	W/mK	L : longitud	inal l	ength	m	
air: ground boundary	-	R: thermal	resist	ance	K/W	
ρ : density	kg/ m³					
$RMSE(x, y) = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (x_i - y_i)^2}$ Eq.					Eq.8	
$CVRMSE(x, y) = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (x_i - y_i)^2} / \frac{1}{m} \sum_{i=1}^{m} y_i $					Eq.9	
m : number of	x : soil divi	: soil division model y : calculated				
samples	calculated	calculated value response				

空気調和・衛生工学会近畿支部 学術研究発表会論文集(2023.3.7) Table 1 24 hours RMSE, CVRMSE (absorption heat)

		,	· · ·	/
Sand	moisture	moisture	moisture	moisture
Sand	content 0%	content 23.3%	content 0 %	content 0 %
depth	0.33m	0.33m	1m	1.5m
RMSE	0.06693	0.03325	0.01513	0.01818
CVRMSE	4.89%	0.48%	1.11%	1.33%

Table 224 hours RMSE, CVRMSE (transmission heat)

10010 2					
Cond	moisture content	moisture content	moisture content		
Sand	0%	23.3%	23.3%		
depth	0.33 m	0.33m	1 m		
RMSE	0.13880	1.27693	0.79496		
CVRMSE	29.35%	32.07%	35.88%		

5.1. 結果と考察

大規模宿、小規模宿、期間 NW 配管の1日単位の熱 収支(Table 3)を算出し、Table 4 に示すケーススタデ ィの結果を考察する。SCOP は Eq.10 から算出する。

(1) 土壌条件の影響

Fig.8から見ると、S1、S2、S3各条件において SCOP は共に1.17になる。そして、一日中の融通熱量もほぼ 同じになる。埋設深さから、全体の融通熱量への影響 が薄いと考えられる。S4、S5、S6には、SCOP それぞ れ1.12、1.11、1.15になる。土壌条件の違いは SCOP に 影響を及ぼすことがわかる。一日の融通熱量変化から 見ると、S4、S5、S6の条件において、基幹 NW 配管に よる熱損失が大きく、小規模宿がほとんど熱を取れな くなる。土壌条件の視点から、熱拡散率増加に伴い熱 損失が大きくなる。寒冷地においては、土壌条件によ る熱源水ネットワークシステムへの影響が大きいこ とがわかる。

(2) 小規模宿の熱回収設備の有無

Fig.7 のように S3~S4 における小規模宿の熱回収設 備を無くすと、小規模宿の熱取得が増えるか確認する。 Fig.9 に融通熱量一日積分値を示す。熱回収設備を無く にすると S3~S6 における SCOP はそれぞれ 1.30、1.08、 1.08、1.11 になった。土壌熱拡散率が低い S3 には熱回 収設備あり場合より SCOP が高くなった。それ以外に は約 0.3~0.4 に低下した。しかし、基幹 NW 配管熱損 失は低下し、小規模施設の融通熱量は全体的に上昇し た。

Fig.7 は基幹 NW 配管と小規模規模施設の温度計測 点を示す。施設間内温度とNW 配管温度差を Fig.10 に、 NW 配管が小規模施設経過前後の温度差を Fig.11 に示 す。Fig.10 より、小規模宿の熱回収設備ありの温度差 を見ると小規模施設と NW 配管温度差が最大 2℃しか ない、つまり小規模宿での熱取得が小さいことを意味 している。熱回収設備なしの場合は、小規模宿の熱源 水温度が低下し、小規模宿 T1 と NW 配管温度 T2 の 差が最大 6℃になる。小規模宿での熱取得が増えるた A-4 め、小規模宿の前後 T2 と T3 での温度差が大きくな り、NW 配管の水温低下が大きくなって(Fig.11)、T3 と土壌内表面との温度差が減少した(Fig.12)。小規模 宿の熱回収設備を外すことによって、小規模宿の熱取 得が断熱あり(S4)の場合と同程度まで増加し、配管 熱損失も減少した。無断熱の基幹 NW 配管の場合は、 大規模宿からの NW への放熱量は増えるが、断熱配管 と同等に小規模宿に熱融通できることを確認した。

まとめ 6

1

0.8

0.6

0.4

0.2

0

0

本研究で得られた知見を以下に示す。

- 土壌の条件によって, 無断熱配管における小規模 \bigcirc 宿取得熱量への影響が大きい。NW 配管の断熱有 無は、小規模宿の取得熱量への影響が小さい。
- (2) 小規模宿内の熱回収設備をなしにすると、大規模 宿から NW への放熱量、小規模宿の NW からの熱

Table 4 soil conditions

空気調和・衛生工学会近畿支部 学術研究発表会論文集(2023.3.7) 取得がともに増え、無断熱配管でも断熱配管と同 程度の熱取得量になることがわかった。

$SCOP = \frac{Q_{con,sys}}{E_{sys}}$			E	q.10	
$Q_{con,sys}$: system generated heat	GJ	SCOP : Sys	-		
E_{sys} : System power consumption((includes HP and water pumps)					
Table 3 Character definition					

	Heat exchange with network
QNW	Amount of heat from facilities to network (positive)
	Amount of heat from network to facilities (negative)
Enthalpy	Pipe heat loss and change in internal energy by water
diff.	temperature change (negative)

補記:本研究は NEDO 補助事業「再生可能エネルギー熱利 用にかかるコスト低減技術開発:温泉熱等の再エネ熱を活 用した分散熱源による熱源水ネットワークシステムのト-タルコスト低減技術開発(2020年11月~2022年7月)|終 了後に実施した研究の成果である.

Small-scale facility (Temperature measuring point) Fig.7

Fig.9 Daily integral value in S3~S6 (No heat recovery)

Fig.11 Temperature difference in T3-T2

【参考文献】

柊本ら:温泉未利用熱の面的利用システムに関する研究熱 1) 源水ネットワークシステムと集中型の熱供給システムの導 入効果の比較,空気調和・衛生工学会近畿支部学術研究発表 会論文集, A-82, 2019

NW and soil inner surface temperature difference(°C)

with heat recovery

---- no heat recovery

空調利用を目的とした帯水層蓄熱の研究 (第 10 報)熱源井及び観測井温度を基にした帯水層蓄熱特性推定 Study on Aquifer Thermal Energy Storage System for Space Cooling and Heating -(Part 10)Estimation of Aquifer Thermal Storage Characteristics Based on Heat Source Well and Observation Well Temperatures-

〇山崎 尊 (大阪市立大学)
 西岡 真稔 (大阪公立大学)
 崔 林日 (三菱重エサーマルシステムズ株式会社)
 中尾 正喜 (大阪市立大学)
 猫島 美奈子 (大阪市立大学)
 Takeru YAMAZAKI*1
 CUI Linri*3
 Masaki NAKAO*2
 Minako NABESHIMA*2

*1 Osaka City University *2 Osaka Metropolitan University *3 Mitsubishi Heavy Industries Thermal Systems, Ltd.

When planning the interseasonal operation of an aquifer thermal energy storage system (ATES), predicted values of the pumping temperature for the next season are required. In this study, for the purpose of predicting the pumping temperature, a method to estimate the heat storage characteristics of the aquifer in question from actual pumping temperature values during ATES operation is continuously investigated. In this report, we compare the estimation accuracy of the method using the pumping temperature of a heat source well and the temperature of an observation well.

1. はじめに

従来¹の昼夜間蓄熱における帯水層の熱流動特性推定 では、熱源井戸の揚水温度の時間変化を実測値から得て、 これと対応する数値計算を行い、その入力変数を変化さ せて実測値と最も適合する計算結果を得た時の入力変数 を推定値とする推定方法を用いてきた。帯水層の熱流動 特性として主要な変数は帯水層厚さ、熱伝導率、容積比 熱、熱分散長、環境流れ(地下水流れ)の5種であるが、 帯水層厚さは推定できないため熱源井戸のスクリーン長 と同じと見做す。また、熱伝導率と容積比熱が熱源井戸の 揚水温度に与える影響は小さいため推定項目から除外し、 残り2種の変数の組み合わせとして推定を行った。

これに対して筆者らは、対象地²⁰(後述)において季節 間蓄熱を行い、熱源井戸から隔離した位置に観測井戸を 設けて帯水層内水温を観測し、水温観測値により帯水層 の熱流動特性推定を行う。熱伝導率と容積比熱は観測井 戸温度に与える影響も小さいと分かったため、残り3種 の変数を独立に推定した。

本研究では、熱源井戸の揚水温度を実測から得て、対象 地における熱流動特性の推定を行った。そして、熱源井戸 の揚水温度と観測井戸温度による熱流動特性推定値を用 いた際の熱回収率の計算値を比較し、帯水層厚さと環境 流れを独立に推定することの意義について検討する。

2. 対象地における ATES 運用

2.1 対象地

兵庫県神戸市和田岬に所在する工場の冷暖房を目的と して2019年12月よりATESの運用が開始された。設置さ れた熱源井戸1(冷水井戸)と熱源井戸2(温水井戸)の2つ の熱源井戸の隔離距離は154mであり、熱源井戸1から西 に27m、40m 離れた地点に観測井戸1と観測井戸2を設 け、両者ともに深度46.5mと51.0mに熱電対を設置し10 分間隔で測定した。また、対象地の帯水層は2層に分か れているが、上下帯水層の流量割合が不明であるため、本 研究では一体として見做し、帯水層厚さはスクリーン長 6.2mとした(Fig.5参照)。なお、熱源井戸1については 運用開始後揚水量不足が判明したため、新たに熱源井戸3 が追加されたが、両者は近接しており共通の帯水層を利 用しているため、本研究では2本の熱源井戸は一体とし て見做して分析を行う。

2.2 ATES 運用実績と観測井戸温度の時間推移

本研究では熱源井戸1を中心として広がる蓄熱水塊の 広がりについて分析する。Fig.1に熱源井戸1の還水温 度・揚水温度、Fig.2に熱源井戸1の還水流量・揚水流量、 Fig.3に熱源井戸1の積算蓄熱量・積算採熱量(注1)の式 (1)参照)、Fig.4に観測井戸1と2における帯水層内温 度実測値、Table.1に冬期・夏期の運転開始日・終了日を 示す。図における赤色は揚水時、青色は還水時を表し、揚水時の流量を正で図示した。Table.2よりATESの運転は 平日に行われ、冬期の還水温度の設定値は10℃である。 Fig.1・Fig.2より設定値を外れている箇所があるものの、 全体として概ね設定通りに運転されている。このような ATES 運転の結果、帯水層内の水温が変化し、観測井戸1 においてはFig.4に示すように冬期の熱源井戸1への冷 水注水に伴う温度低下、春期停止~秋期停止期間におけ る温度上昇が現れた。

3. 熱源井戸の揚水温度による帯水層蓄熱特性の推定

3.1 帯水層モデル概要

本研究では土壌中の熱の移動や拡散を解析するために、 独 WASY 社の FEFLOW を使用した。Fig.5 を参考に数値計 算時に作成したモデルの空間分割を Fig.6、モデル平面図 は Fig.7、境界条件を Fig.8、物性値を Table.3 に示す。 Fig. 6 におけるスライス番号は空間分割における境界面 番号を表す。層厚は 0.65m(一部は調整のために変更した) で設定した。Fig. 7 に示すように、500m×500mの計算領 域のうち熱源井戸周辺(234m×176mの領域内)のみ計算精 度向上のためにメッシュサイズを一辺 2.5m と小さくし、 それ以外は一辺約 10m とした。Table. 3 に示す物性値に 関して、初期地中温度は実測値であるが、それ以外の項目 は熱源井戸の揚水温度への影響が小さいため、文献値を 引用した。ただし、帯水層全体の熱伝導率と容積比熱の値 は、砂礫と水の物性値を間隙率で重み付けした値であり、 それぞれ等価熱伝導率、等価容積比熱と呼ぶ(注 2)参照)。 文中で述べる熱分散長は縦熱分散長であり、横熱分散長 は縦熱分散長の 1/10 とした。入力運転条件として1日ご との熱源井戸の流量・注水温度を与える。

Table.3 Physical property

Name	water	Aquifer	Impermeable layer
Porosity [-]	-	0.3	0.3
Original ambient temperature [°C]	19.6	19.6	19.6
Volmetic heat capacity $[MJ/(m^3 \cdot K)]$	4.2	3.18	3.06
Equivalent volmetic heat capacity [MJ/(m ³ ·K)]	-	3.48	-
Thermal conductivity $[J/(m \cdot s \cdot K)]$	0.6	2.7	1.2
Equivalent thermal conductivity [J/(m·s·K)]	-	2.07	-
Coefficient of permeability [m/s]	-	1.73×10 ⁻³	1.0×10 ⁻⁸

Fig.9 Comparison of measured and calculated values in heat source well 1 (Heat dispersion length 0.5m, Effect of groundwater velocity)

3.2 環境流速と熱分散長の値の範囲

環境流れと熱分散長を4水準ずつ計16通りの組み合わ せについて数値計算を行った(Table.4参照)。環境流れの 流向は観測井戸から熱源井戸1へ向かう方向を正とし、 その他の流速成分は0とした。各物性値は、推定問題に おいて取り得ると思われる変化幅を設定した。

3.3 推定結果

2021 年度の熱源井戸1における揚水温度の実測値と計算値の比較について、Fig.9に縦熱分散長0.5mに固定した場合を示し、Fig.10 に環境流速0m/year に固定した場合を示す。Fig.9より環境流速を大きくすると揚水温度が高くなり、夏期運転開始時は計算値に殆ど差はないが、しばらくすると差が大きくなり、終了時にはその差は小さくなる。Fig.10より計算値の差の現れ方は環境流れより小さく、熱源井戸の揚水温度に与える影響は環境流れよりも小さい判断できる。

このような熱流動特性の値による計算結果の差を確認 した上で、実測値と計算値の誤差について RMSE を算出し て比較した。2021 年度の RMSE 算出結果を Table.4 に示 す。Table.4 より、環境流速 20m/year、縦熱分散長 5.0m で RMSE0.17℃という結果を得た。なお、2020 年度と 2022 年度の運転では共に環境流速 40m/year、縦熱分散長 2.0m で RMSE 最小となり、それぞれ 0.57℃、0.42℃という結果

		Heat dispersion length[m]					
RMSE [°C]			0.5	1	.0	2.0	5.0
0		0	1.46	1.	32	1.08	0.54
	Darcy	20	0.91	0.	81	0.62	0.17
V Tm		40	0.51	0.	45	0.38	0.56
Įn	n/year]	60	1.30	1.	24	1.22	1.32
Table.5 Estimated thermal hydraulic properties					5		
			Pun	nping tem neat sourc	perature e well 1	of Tem obser	perature of vation well 1
Aquifer thickness			(S	creen len	gth 6.2m)		3.1m
	Da	rcy velocity		20m/year		40)m/year
	Heat di	spersion leng	th 5.0m 1.0m			1.0m	
	20 20						
	16 14 12 12						
	10 2021/5/1 2021/6/1 2021/7/1 2021/8/1 2021/9/1 2021/10/1 Date						

Table.4 RMSE(FY2021)

Fig.10 Comparison of measured and calculated values in heat source well 1 (Groundwater velocity 0m/year, Effect of heat dispersion length)

—実測 ——0.5m ——1.0m ——2.0m ——5.0m

を得た。3年間の運転の中で2021年度の推定結果が実測 値との誤差が最も小さいため、環境流速20m/year、縦熱 分散長5.0mを熱源井戸1における揚水温度による推定結 果とした。

4. 熱回収率の分析

本章では、観測井戸及び熱源井戸の水温分析により得た対象地の熱流動特性値を用いた際の熱回収率を実測値と比較し、観測井戸を設けることで明らかになったことについて述べる。また、既往研究では明らかになっていない環境流れの有無により帯水層厚さと熱回収率の関係がどのように変化するのかについても言及する。なお、熱回収率の算出式は(注3)の式を参照する。

4.1 熱流動特性推定値を使用した際の熱回収率

対象地の熱流動特性値に関して、筆者らが文献²⁰にお いて観測井戸温度により推定した値と熱源井戸の揚水温 度により推定した値を Table.5 にまとめる。この推定値 を用いた際の熱回収率の実測値と計算値の比較を Table.6 に示す。Table.6 より観測井戸温度による推定値 を用いた際の熱回収率は、実測値と計算値の誤差が約 1% 以内であったが、熱源井戸の揚水温度を用いた際は、最大 約 8%の誤差が生じた。熱源井戸の揚水温度を用いた分析 では帯水層厚さを推定出来ないため推定項目から除外し たが、その結果、観測井戸温度を用いた場合よりも推定誤 差が大きくなった。このことから帯水層厚さと環境流れ が熱回収率に与える影響が大きく、精度高く推定するた めには観測井戸温度を用いた推定のようにそれぞれ独立 に推定できることが重要であると判断できる。

4.2 帯水層厚さが熱回収率に与える影響

Doughty ら³の知見によれば、「環境流れがない条件下 で帯水層厚さが大きくなると熱回収率が向上する」と推 測できるが、本研究では以下 2 つの理由から環境流速の 有無で帯水層厚さが熱回収率に与える影響について分析 する。

①本研究の帯水層条件における帯水層厚さと熱回収率の 関係を分析する

②対象地では環境流速が 0 ではないので、熱回収率に与 える環境流速の影響を分析する

Table.7 に計算条件を示す。Table.7 の計算条件につい て、条件1は帯水層厚さ3.1mの時と共通の流量条件とし て与える場合であり、条件2は帯水層厚さ3.1mの時の2 倍の流量を与える場合であり、両帯水層厚さで蓄熱半径 が等しくなる。なお、帯水層モデルや物性値は 2.1 節を 参照する。

熱回収率を分析する。帯水層厚さが熱回収率に与える 影響について、環境流速が 0m/year の場合を Fig. 11、環 境流速が 60m/year の場合を Fig. 12 に示す。ただし、縦 熱分散長は 1.0m として計算を行った。Fig.11 より環境 流速がない場合、帯水層厚さと熱回収率の間に正の相関 があり、Doughty らの知見と一致する。Fig. 12 で帯水層 厚さ3.1mと6.2m(条件1)より、環境流れがある場合、帯 水層厚さと熱回収率の関係は単純な正の相関では説明で きない。しかし、帯水層厚さ 3.1m と 6.2m(条件 2)より、 蓄熱半径が等しいという条件下では環境流れの有無に関 わらず、帯水層厚さが大きくなると熱回収率も向上する ことが分かる。このことから、帯水層厚さが大きくなると

Table.6 Comparison of measured and calculated heat recovery rates

-					0				
	Heat recovery rate [%]								
	Manager	م با ب م	Observat	ion well 1	Pumping temperature of				
Year / Season	ivieasuri	ed value	tempe	erature	heat sou	rce well 1			
	Heat source	Heat source	Heat source	Heat source	Heat source	Heat source			
	well 1	well 2	well 1	well 2	well 1	well 2			
2019/Winter									
2020/Summer	25.03		25.86		28.37				
2020/Winter		50.08		51.66		58.00			
2021/Summer	56.34		55.46		58.94				
2021/Winter		50.96		51.73		55.89			
2022/Summer	51.52		50.89		54.47				

Table.8 Symbol table

(*1: Measured value, *2: Calculated

value, *3: Literature value)

- Q_{in} Q_{out} Q_{out} V f^* n
- Initial ground temperature["C]*" Return temperature["C]*" Pumping temperature["C]*" Pumping temperature["C]*" Pumping flow rate[m³]*¹ Thermal storage capacity[MJ]*² Equivalent physical property val Porosity[-]*³
- fw faq Cρ Physical properties of water
- Physical properties of gravel Specific heat by volume*³ Thermal conductivity*³
- eat recovery rate*

■3.1m ■6.2m(条件1) ■6.2m(条件2)

Fig.11 Effect of aquifer thickness on heat

recovery rate (Groundwater velocity 0m/year)

蓄熱水塊の水平方向の大きさが小さくなるため、水平に 流れる環境流れの影響を大きく受けて熱回収率が低下す ると推測できる。

5. まとめ

本研究では、ATES 運用に伴う熱源井戸の温度や流量の 実測値を用いて、熱源井戸の揚水温度により環境流れと 熱分散長を組み合わせて推定する従来の手法を用いて対 象地の熱流動特性を推定した。そして、熱回収率について 観測井戸温度による推定結果
²⁾と比較した。その結果、帯 水層厚さと環境流れを独立に推定することが出来る観測 井戸温度を用いる推定方法が精度高く熱回収率を推定で きることが分かった。

注1): 蓄熱量の定義式

$$V = C_w \rho_w Q_{in} (\theta_0 - \theta_{in}) \tag{1}$$

注2):等価容積比熱と等価熱伝導率の定義式

$$C\rho^* = C_w \rho_w \times n + C_{aq} \rho_{aq} \times (1-n)$$
(2)

$$\lambda^* = \lambda_w \times n + \lambda_{aq} \times (1 - n) \tag{3}$$

注3):熱回収率の定義式

$$\eta[\%] = \frac{c_w \rho_w \sum_i Q_{out_i}(\theta_{out_i} - \theta_0)}{c_w \rho_w \sum_i Q_{in_i}(\theta_{in_i} - \theta_0)} \times 100 \qquad (4)$$

参考文献

1) 竹口ら:「空調利用を目的とした帯水層蓄熱の研究-(第2報) うめきた地区における熱回収率の実験値と熱分散長の同定 值」、空気調和衛生工学会大会学術講演論文集第2巻、2020年 9月

2) 山﨑ら:「熱源井戸近傍に設けた観測井の水温変化及び帯水 層内の水温分布推定」、Kansai Geo-symposium 2022 論文集、 2022年11月

3) Doughty Christine 5:A dimensionless parameter approach to the thermal behavior of an aquifer thermal energy storage system, Water Resources Research, vol.18, No.3, pp571-587, 1982

Table.7 Calculation conditions and heat storage radius

	Aquifer thickness	Aquifer thickness 6.2m			
	3.1m	terms 1	terms 2		
Flow rate	500m³/day	500m³/day	1000m³/day		
Heat storage radius	78.14m	78.14m 39.07m			
Initial ground temperature	19.6°C				
Return temperature	Heat source well 1:14.6°C、Heat source well 2:24.6°C				
Deried of operation	Winter and summer operation period, spring and fall stop				
Ferrou or operation	period: 90 days each (total 360 days)				

Fig.12 Effect of aquifer thickness on heat recovery rate (Groundwater velocity 60m/year)

空調利用を目的とした帯水層蓄熱の研究 (第11報)冬期冷水製造方法の検討

Study on Aquifer Thermal Energy Storage System for Space Cooling and Heating - (Part 11) Examination of the Method of Increasing Cold Water Storage in Winter-

正会員 ○西岡 真稔 (大阪市立大学) 非会員 結香 (大阪市立大学) 安田 林日 (三菱重工サーマルシステムズ株式会社) 正会員 崔 技術フェロー 中尾 正喜 (大阪市立大学) 正会員 鍋島 美奈子 (大阪市立大学) Masatoshi NISHIOKA *1 Yuka Yasuda *1 Linri CUI*2 Minako NABESHIMA*1 Masaki NAKAO*1 *1 Osaka City University ^{*2} Mitsubishi Heavy Industries Thermal Systems, Ltd.

When aquifer thermal energy storage (ATES) is operated in areas such as Osaka, where the heating load is smaller than the cooling load, the amount of cold heat stored is insufficient compared to the amount of warm heat stored, resulting in an annual heat storage imbalance. To solve this problem, this study proposes an operation method that additionally produces cold water at night during the winter season. In this study, the model is improved to a realistic model that controls the pump flow rate, and a comparative analysis between a cooling tower system and a heat pump system is conducted.

1. 研究背景・目的

震災による電力供給不足を背景に省エネルギー 化、再生可能エネルギーの活用などが重要視されて いる。そこで効率的に熱エネルギーを冷暖房の熱源 として利用する帯水層蓄熱空調システム(ATES)に着 目した。

ATES の季節間運転を行う場合、暖房の冷排熱を 冷房用熱源として使用するため暖房負荷が冷房負荷 より小さい地域では冬期の蓄熱量が不足する。この ような問題に対し Martin Bloemendal¹⁾らは ATES を長 期間にわたり持続的に運用するために熱収支平衡を 図ることの重要性を指摘した。以上の背景の下で本 研究では冬期の冷水製造により冷排熱量の不足を補 い、熱収支平衡を図る方法として、次の2つを採り 上げ比較検討する。(Fig.1,2)

高効率ターボヒートポンプ蓄冷方式(HPS)
 フリークーリング蓄冷方式(FCS)

仲西²はこの2つの運転方式を注水温度成り行き 条件で比較した。その結果、Fig.3のように外気湿球 温度が13℃以下のとき FCS は HPS よりも SCOP が 高いことを示し、湿球温度13℃を閾値として2方式 を切り替える運転方法を提案した。また Fig.4 に示さ れるように HPS では冷却水ポンプの消費電力が大き く、これを適切に制御し消費電力を小さくすべきと の検討課題を残した。この結果を踏まえ、採熱時の 利点から注水温度一定、そしてポンプの消費電力を 小さくするモデルの改良を行い、仲西²⁾の検討をさ らに展開することを目的とする。

Fig. 1 High efficiency turbo heat pomp System

Fig. 2 Free-cooling System

2. モデルの改良点

以下に HPS と FCS のモデルに施したポンプ制御 等の改良点を示す。

①注水温度を一定のための深井戸ポンプの流量制御 ②凝縮器入口温度(FCSは熱交換器出口温度)一定 のための冷却水ポンプの流量制御

③冷却塔出口温度一定のための冷却塔ファン制御

以下改良前のモデルを「注水温度成り行きモデル」、 この改良後のモデルを「注水温度一定モデル」と呼 ぶ。

3. 運転条件

各機器性能は帯水層蓄熱システムの実機の仕様に 準じた。機器の仕様と用いた Modelica Buildings Library のモジュールを Table.1 に示す。

3.1 外気湿球温度

大阪の 12~2 月の外気湿球温度 ³⁾を想定して、 -5~15℃の範囲(1℃刻み)で運転を行った。

3.2 ポンプ流量

2つの運転方式のポンプ流量は以下に示す。

深井戸ポンプ:注水温度を 10℃一定にするために流 量制御

蒸発器ポンプ:60.3m³/h、凝縮器ポンプ:70.4m³/h 冷却水ポンプ(HPS):凝縮器入口温度を14℃一定に するために流量制御

冷却水ポンプ(FCS):熱交換器出口温度を 9.9℃一定 にするために流量制御

3.3 揚水温度

蓄熱されていない常温井戸である熱源井 B から熱 源井 A へ冷水を蓄熱する運転を想定し、揚水温度は 18℃で固定とする。

3.4 冷却塔ファン

冷却塔ファンは2台あり、HPSでは冷却塔の冷却 塔出口温度を13.5℃になるように、FCSでは冷却塔 出口温度を9.5℃になるよう冷却塔ファンの台数制御 を行うことを想定している。

Table 1 Equipment list

機器		仕様	動力	機器	仕様		動力	機器		仕様	動力
	Capacity	200 USRt(703.3kW)			Exchange heat quantity	818.0kW		D	Flow rate	100m³/h	10.5
		Input:12.0°C	1	II	High temperature	26°C/21°C	1	Deep well	Lift	60mAq	18.5
	Coolled water	Output:7.0°C]	rieat	side condition	140.7m³/h		pump	modulo	Buildings.Fluid.Movers.F	kW
Turka		Flow rate:120.6m ³ /h	197.5	exchanger	Low temperature	20°C/25°C	-		module	lowControlled_m_flow	
Turbo		Input:33°C	127.5	(for	side condition	140.7m³/h			Flow rate	127m³/h	
heat pump	Cooling mater	Output:38°C	kW	Aquifer)		Buildings.Fluid.HeatExchang		Evaporater	Lift	28mAq	11
	Cooling water	Elementer 140 7m ³ /h			module	ers.PlateHeatExchangerEffect		pump	medule	Buildings.Fluid.Movers.F	kW
		Flow rate:140.7 m / h				ivenessNTU			module	lowControlled_m_flow	
	module	Buildings.Fluid.chillers.Electric	1		Exchange heat	818 0FW			Flow rate	$150.2m^{3}/h$	
	module	ReformulatedEIR			quantity	010.0KW			110w Tate	130.2117/11	
	Capacity	814.0kW		Heat	High temperature	38°C/33°C		Condenser	Lift	27mAq	18.5
	Flow rate	140.7m ³ /h		exchanger	side condition	140.7m ³ /h		pump		Buildings.Fluid.Movers.F	kW
	Cooling water	32°C/37°C		(for	Low temperature	32°C/37°C			module	lowControlled m flow	
Cooling	temperature Outside wet hulb		-	Cooling	side condition	140.7m ³ /h			Flow roto	140.7m ³ /h	
tower	Outside wet buib	27°C		Cooling		140.7m ² /n	-	Cooling	Flow rate	140.7m ⁻ /n	
	temperature			tower)		Buildings.Fluid.HeatExchang		water	Lift	20mAq	
	module	Buildings.Fluid.HeatExchanger			module	ers.PlateHeatExchangerEffect		numn	module	Buildings.Fluid.Movers.F	kW
	module	s.CoolingTowers.YorkCalc				ivenessNTU		pump	module	lowControlled_m_flow	

4. 結果

HPS、FCS どちらも蓄熱量が 350kW になるよう運転を行った。

4.1 注水温度・蓄熱量

注水温度の結果を Fig.5 に、蓄熱量の結果を Fig.6 に示す。HPS は注水温度を 10℃一定に保つことがで きた。一方 FCS は湿球温度が高くなると、注水温度 も高くなってしまった。

本研究では深井戸ポンプを制御したことにより湿 球温度が4℃を超えると、蓄熱量は非常に小さくな った。FCSでは外気湿球温度に運転条件として上限 値を設け、その範囲内で運転すれば、この問題を回 避できよう。

4.2 消費電力

HPS の消費電力内訳について Fig.7 に示す。シス テム全体での消費電力算出において、対象とする機 器はポンプ、ヒートポンプ、冷却塔ファンとする。 外気湿球温度 9℃以上のとき消費電力が大きくなっ てしまった。この原因として湿球温度 9℃以上では 冷却塔出口温度 13.5℃、凝縮器入口温度 14℃設定と いう制御条件は機器の仕様に対して能力を上回る条 件であり、冷却水ポンプの消費電力が大きくなった ためだと考えられる。そこで、消費電力を抑える方 法として冷却塔出口温度・凝縮器入口温度を高く し、制御条件を緩和する方法について検討を行っ た。

冷却塔出口温度・凝縮器入口温度を上げた場合の 消費電力内訳を Fig.8 に示す。凝縮器入口温度を上げ たことで冷却水ポンプの消費電力を小さくすること ができた。ただし凝縮器入口温度を高くしたことに より冷凍機の消費電力は増加している。また注水温 度成り行きモデル(Fig.4)と比較すると、冷却水ポン プを制御したことで冷却水ポンプの消費電力は小さ くなった。

FCSの消費電力内訳を Fig.9 についても注水温度 成り行きモデル(Fig.10)と比較すると、冷却水ポンプ を制御したことで湿球温度 4℃以下のとき冷却水ポ ンプの消費電力は小さくなった。

4.3 SCOP・切り替え温度

SCOP ^{注1}について Fig.11 に示す。HPS では消費電 力が小さくなったことで、注水温度成り行きモデル よりも SCOP は高くなった。

FCS の湿球温度 5℃以下のときもポンプ制御を行 ったことで注水温度成り行きモデルよりも SCOP は 高くなった。一方、湿球温度 6℃以上のとき注水温 度一定制御を行ったことで蓄熱量が小さくなり、

SCOP は低くなった。湿球温度 6℃以上のときは FCS の不利な部分を補うために HPS で運転を行う。また FCS から HPS への切り替えの温度は 13℃から 6℃に 変わった。

※注1: 蓄熱量に対する SCOP= 設備全体動力

蓄熱量=(揚水温度 – 注水温度)×深井戸ポンプ流量 設備全体:ポンプ、ヒートポンプ、冷却塔ファン

5. まとめ

冬期冷水製造運転の2方式について、注水温度一 定のための制御とポンプの消費電力を小さくするよ うな制御を行った。次の結果が得られた。

1)ポンプの改良をしたことで、仲西と比べて本研究 の HPS の SCOP が向上した。FCS についても外気湿 球温度 4℃以下で向上した。

2)本研究では、FCS から HPS への切り替えは湿球温度 6℃まで低くなった。

3)FCS の SCOP は、注水温度成り行きから一定条件 に変更したことにより、湿球温度 5℃を超えると 6 程度低下する。

蓄熱量や注水温度などの運転パラメータを変化させたときの SCOP についての検討は今後の課題とする。

参考文献

- Martin Bloemendal, Theo Olsthoorn, Frank Boons: How to achieve optimal and sustainable use of the subsurface for Aquifer Thermal Energy Storage, Energy Policy 66(2014) 104-114
- 2) 仲西琴音、「帯水層を利用した蓄熱空調システムの研究-帯水層蓄熱システムの長期持続的運用を目的とした冬期冷水製造方法の検討-」、大阪市立大学修士論文、2022年3月
- 日本建築学会編,拡張アメダス気象データ 1981-2000.
 2005 年 8 月

診察室における感染予防対策としての局所換気システムの性能評価 (その5)給気方式ごとのガス発生によるエアロゾル感染リスクの評価

Performance of Local Exhaust System as Prevention Measure of Infection in Consulting Room (Part5) The Effect of Air Supply Systems with Gas Generation on Aerosol Infection Risk

○藤原 碧海(大阪大学)山中 俊夫(大阪大学)小林 知広(大阪大学)
 崔 ナレ(大阪大学)小林 典彰(大阪大学) 吉原 隼(大阪大学) 張 靱(大阪大学)
 Aoi Fujiwara^{*1} Toshio YAMANAKA^{*1} Tomohiro KOBAYASHI^{*1}
 Narae CHOI^{*1} Noriaki KOBAYASHI^{*1} Jun YOSHIHARA^{*1} Ren ZHANG^{*1}

*1Osaka University

In this paper, a local exhaust ventilation system that combines a floor-supply ventilation with a local exhaust system (hood) is intrduced as a countermeasure against aerosol infection during close-range conversation. The capture efficiency was caluculated to examine the effectiveness of the combination of hood and floor-supply ventilation. In addition, the quanta concentration in front of non-infected person's mouth and the time to reach 5% risk of infection to non-infected person is calculated to evaluate infectious risk in each condition.

はじめに

今なお多くの感染者を生み出す新型コロナウイルス (COVID-19)の感染経路の一つに飛沫核・微小飛沫によ るエアロゾル感染があり、換気による対策が求められる。 しかしながら、1~2m以内の特にマスク未着用時の近接 会話時において全般換気の効果に限界があるり。そこで、 近接会話時の感染対策として、局所排気装置(フード) の導入を提案し、フードの性能は周辺気流の影響を大き く受ける。ことから、給気方式として静穏な気流を形成 する全面床吹出し方式を組み合わせた「局所排気併用換 気システム」を提案する。導入場面として、本研究では 感染者の位置が特定できる診察室と、感染者の位置が不 明な診察室以外の面談室や会議室、飲食店などを想定す る。また、診察室に導入した局所排気装置の性能評価に関 連する既往研究が少なく、不明な点が多いことを受け本 報では、全面床吹出し方式とフードの組み合わせの有効 性を明らかにすることを1つ目の研究目的とし、3つの 給気方式を比較する実大実験を行う。その後、2つ目の 研究目的として、提案システムの感染対策としての性能 評価を行う。フードと給気方式の有効性を検討するため にフード捕集率を算定し、感染対策性能を評価するため

に在室者口前 quanta 濃度 nd、対面在室者の感染リスク が 5% に達するまでの時間 t_{5%} を算定した。本報では、 それらの結果を報告する。

1. 実験概要

1.1 実験設備

実験室の断面図を Fig.1 に示し、実験空間のアイソメ図 を Fig.2 に示す。実験室は 2,400 × 3,800 × 2,200 mm の実 験空間とその床下チャンバー、周辺空間によって構成され る。HEPA フィルターにより清浄化した外気を実験空間床 下に給気し、その後 3 通りの床吹出しにより室内に給気す る。ここで、給気量は 1000 m³/h (50ACH) で固定されている。 排気は、局所排気装置(フード)と流量バランスをとるた めの一般的な天井給気口により合計風量 990 m³/h で行われ る。局所排気装置の詳細な寸法を Fig.3 に示す。以上の通り、 実験室は室内を正圧に保つクリーンルームとして設計され ている。また、実験室内には感染者と非感染者を模擬する 人体 2 つを口前間隔 1200 mm で配置した。実験中人体 1 体あたり 75 W で発熱させた。

実験条件を Table.1 に示す。診察室と診察室以外を想定し、それぞれの想定においてフード排気量を8通り変化さ

Fig. 2 Isometic view of experimental room Fig. 3 Detailes of hood

	Air Supply Method from	Air Flow Rate [m3/h]	Hood Horizontal	Hood Flow Rate	Hood-Head Distance
	Under Floor Chamber	(Air Change Rate [/h])	Position	[m3/h]	[mm]
Case A-1	Floor-supply ventilation	1,000 m3/h(50 /h)	above the infected	0,50,100,150,200,300,400,500	500
Case A-2	8 Swirling flow type diffusers	1,000 m3/h (=125m³/h/diffuser×8) (50 /h)	person	0,50,100,150,200,300,400,500	500
Case A-3	12 Displacement flow type diffuser	1,000 m3/h (=83.3m ³ /h/diffuser×12) (50 /h)	(patient)	0,50,100,150,200,300,400,500	500
Case B-1	Floor-supply ventilation	1,000 m3/h(50 /h)		0,50,100,150,200,300,400,500	500
Case B-2	8 Swirling flow type diffusers	1,000 m3/h (=125m ³ /h/diffuser×8) (50 /h)	middle of manikins	0,50,100,150,200,300,400,500	500
Case B-3	12 Displacement flow type diffuser	1,000 m3/h (=83.3m ³ /h/diffuser×12) (50 /h)		0,50,100,150,200,300,400,500	500

Table 1 Details of Experiment Parameter

Case A-2

Swirling Flow Type Diffuser

patient doctor

Case A-3

Displacement Flow Type Diffuser

infected

Case B-1 Case B-2 Case B-3 Floor-Supply Ventilation Swirling Flow Type Diffuser Displacement Flow Type Diffuser (b)Case B:General Conversation Fig.3 Images of Experimental Conditions

Fig.5 Method of Exhalation Generation

せる実験を給気方式3通りに対して行う。実験概念図を Fig.3に示す。診察室では患者が感染した状態で医者と会 話する場面を想定し、既報のフード位置に関する検討にお いて患者頭上にフードを設置した際最も高い性能を示した "ことから、フードを患者頭上に固定する。診察室以外に おいては、感染者の位置が特定できないため、現実的な導 入位置としてフードを人体間に固定し、机を介しての対面 が一般的であることから机を設置して検討を行う。次に、 比較する3通りの給気方式における床面をFig.4に示す。 比較する3通りの給気方式における床面をFig.4に示す。 比較する3通りの給気方式における床面をFig.4に示す。 比較する3通りの給気方式における床面をFig.4に示す。 比較する給気方式は全面床吹出し方式、旋回流型床吹出し 方式、置換換気型床吹出し方式の3通りである。全面床吹 出しでは、床全面から低風速(0.3 m/s)で給気することで 静穏な気流を形成する。一方旋回流型床吹出しでは、旋回 流型床吹出しディフューザ-8個からの風速3.58 m/sの給

Floor-Supply Ventilation Swirling Flow Type Diffuser Displacement Flow Type Diffuser Fig. 4 Floor Surfaces for each Air Supply Method

Fig.6 Measurement Points (CO2 Concentration, Particle number)

気により室内気流を形成し、置換換気型床吹出しでは、置 換換気型床吹出しディフューザー12個により床面に沿っ た角度で給気する。

1.2 呼気の発生条件・測定点

本研究では、感染者呼気の再現を CO₂ トレーサーガス、 ネブライザーによる模擬唾液噴霧の 2 通りの方法で行い、 それらの同時発生を行ったが、本報では CO₂ トレーサー ガスによる結果を報告する。呼気発生の概念図を Fig.5 に 示す。空気と密度を等しくするために CO₂ とヘリウムを 5:3(CO2:He=3.26 L/min:1.95 L/min) で混合し、ネブライザー により霧化した模擬唾液粒子とともに感染者口前(高さ 1,100 mm)から発生させる。なお、呼気風速、吹出し角度 は既報の被験者実験^{*}により得られた値を使用し、それぞ れ 0.3 m/s、下向き 11.9°とした。その後、発生した CO₂ 濃度、 模擬唾液粒子数をそれぞれ Fig.6 に示す測定点で測定した。

2. 評価指標

2.1 フード捕集率評価

フードと給気方式の組み合わせの有効性を検討するため に式(1)よりフード捕集率を算定する。式(1)は、発生トレー サーガス流量のうちフードで捕集した割合を示す。

$$\eta = \frac{Q_h(C_h - C_{SA})}{Q_h C_h + Q_e C_e - Q_{SA} C_{SA}} \tag{1}$$

 η :フード捕集率 [-] $C_h:$ フードのトレーサーガス濃度 [-] $Q_h:$ フード排気量 [m³/h] $C_e:$ 天井排気口のトレーサーガス濃度 [-] $Q_e:$ 天井排気口排気量 [m³/h] $C_{SA}:$ 給気 (床下) トレーサーガス濃度 [-] $Q_{SA}:$ 床面給気量 [m³/h]

2.2 感染リスク評価

本報では、Wells&Riley model[®]に基づく感染リスク評価 式を用いて各換気方式の感染対策性能を評価する。モデ ルでは、1 quanta を閉鎖空間において 63.2% の新規感染者 を生む感染力の単位と定義し、基本式は式(2)で表される。

$$P = \frac{C}{S_0} = \frac{S_0 - S}{S_0} = 1 - e^{-n}$$
(2)

P:閉鎖空間における新規感染者の増加率

C :新規感染者数

 S_{o} : (susceptibles) 感染可能性を有する人の数の初期値

S: 一定時間経過後に感染可能性を有する人の数

n:感染リスクの評価単位 [quanta]

モデルを前提に、式(3)より医者(在室者)の口前 quanta 濃度 nd を算定した。この際、感染者の quanta 生成 率として REHVA¹が会話時において算定した 42 quanta/h を 使用した。その後 nd の値を用いて医者(在室者)の感染 リスクが 5%に達するまでの時間 t_{5%}を式(4)より算定する。 REHVA¹がオフィスにて十分低い感染リスクと述べる際に 5% という値を使用したことから、本報では十分低い感染 リスクして 5% を採用した。

A-1 Floor-supply ventilation (above the infected person)
 A-2 Swirling flow type diffuser (above the infected person)

$$n_d = q_{pm} \cdot \eta = \frac{q}{Q} \cdot \frac{C_d}{C_{nm}} \tag{3}$$

n_d : 医者の口前quanta濃度 [quanta/m³]

q : 感染者の単位時間当たりのquanta生成量 [quanta/h]

q_{pm} : 完全混合時の室quanta濃度[quanata/m³]

η : 完全混合濃度に対する医者の口前トレーサーガス濃度比

Q : 室換気量 [m³/h]

C_a : 医者の口前トレーサーガス濃度

Cpm: 完全混合時の室平均トレーサーガス濃度

$$t_{P\%} = -\frac{\ln(1 - P/100)}{n_d \cdot P_d} \tag{4}$$

t_{P%}: 医者(在室者)の感染リスクがP%に到達するまでの時間[h]

n_d : 医者(在室者)の口前quanta濃度 [quanta/m³]

P:閉鎖空間における新規感染者の増加率

P_d: 医者(在室者)の呼吸量 [m³/h]

3. 結果·考察

3.1 CO₂ 規準化濃度の空間分布

フード排気量 100 m³h (天井排気量 890m³h)の条件に おいて、排気口における流量重みづけ濃度で規準化した CO₂トレーサーガス濃度の空間分布を Fig.7 に示す。全面 床吹出しでは、Case A,Case B どちらも規準化濃度が 0 に 近く、フードで捕集できない場合に関しても一方向に排 気されることが分かる。置換換気型では、濃度成層が確 認され上昇気流の形成が示唆されるが、全面床吹出しよ り室内気流に乱れが確認できる。旋回流型では、呼気発 生点付近 (Case A:Pe、Case B:Pa,Pc,Pe) で下降気流の存 在が示唆され、その他測定点では規準化濃度が 1 に近い ことから呼気は下降後に混合すると考えられる。旋回流 型では、ディフューザー1 つ当たり 125 m³h という大き な給気量により、ディフューザー間で循環流による下降 気流が生じると考えられる。

- - O- · A-1 Floor-supply ventilation (middle of manikins)
- \triangle A-2 Swirling flow type diffuser (middle of manikins)
- - A-3 Displacement flow type diffuser (middle of manikins)

(a)Case A (Hood Flow Rate:100 m³/h)

(b)Case B (Hood Flow Rate:100 m³/h)

Fig.7 Space Distribution of Normalized CO₂ Concentraton

3.2 捕集率、感染リスクの算定結果(Case A 診察室)

Case A,Case Bにおけるフード捕集率、感染リスクの算定 結果を Fig.8 に示し、本節では Case A の結果に着目する。 まず、捕集率は「全面床吹出し>置換換気型>旋回流型」 の順番になる。このことから、やはりフードの捕集性能は 周辺気流の乱れを大きく受け、静穏な気流を形成する全面 床吹き出しとフードの組み合わせの有効性は明らかであ る。感染リスクを給気方式毎に比較すると、全面床吹出し では t_{5%}の値は常に 24 時間を超え、感染に対して十分に 安全と言え、置換換気型では、フード導入時(フード排 気量 200 m³h 以上) t_{5%}の値は一般的な勤務時間の最大 値を想定した 8 時間を超え、比較的安全と言える。一方、 旋回流型では、t_{5%}の値は常に 8 時間を超えず、安全と は言い切れない。以上の結果から全面床吹出しにおいて 感染リスクが最も低く、提案システムの高い感染対策性 能が確認できる。

3.3 捕集率、感染リスクの算定結果(Case B 診察室 以外)

本節では Case B の結果に着目する。捕集率は「旋回流型>置換換気型>全面床吹出し」の順番になり、全面床吹出しとフードの組み合わせの有効性は確認できない。Case A と Case B を比較すると、上向き気流が生じる全面床吹出し、置換換気型ではフード位置の影響が大きく、上昇した呼気を捕集する位置にフードを導入することが必要だと考えられる。また、旋回流型では下降流と混合の影響により、フード位置の影響をほとんど受けないことがわかる。

感染リスクを給気方式毎に比較する。全面床吹出しでは、 t_{5%}の値は常に24時間を超え感染に対して十分安全と言 え、置換換気型では、概ねt_{5%}の値は8時間付近であり

比較的安全と言える。一方、旋回流型では、t_{5%}の値は4 時間を超えず安全とは言えない。以上から全面床吹出し における高い感染対策性能が示される。ここで、フード 排気量に伴う感染リスクの変化の仕方に着目する。Case A では全面床吹出しと置換換気型においてフードを導入 することによる感染リスクの低下が確認できるが、Case Bにおいてフード排気量の変化に伴う感染リスクの変化 はわずかであり、フード導入による効果はほとんど見ら れない。フード捕集率とndの関係を示す Fig.9 からも、 Case B においてはフード捕集率の上昇に伴う感染リスク の低下は小さく、フード導入後も在室者口前に届く呼気 を捕集できないと分かる。以上から、診察室以外におい て全面床吹出しとフードの組み合わせによる効果は得ら れず、全面床吹出しの示す高い感染対策性能は給気量 1000 m³/h における全面床吹出し単体の性能によるもの と考えられる。そのため、一般的な給気量の室への局所 排気フードの導入には慎重な検討が求められる。

4 . まとめ

本報では、診察室への導入において全面床吹出しと フードの組み合わせの有効性を確認し、診察室と診察室 以外における提案システムの高い感染対策性能を確認し た。しかし、診察室以外においては1000 m³/h の給気量 による影響が大きく、導入には慎重な検討が必要だと考 えられる。今後は換気量に関する検討が求められる。 謝辞

なお、本研究は、科研費基盤研究 (B)21H01492、挑戦的研究(萌芽)19K22011、及び令和2年度大阪大学医学部第型コロナウイルス対策研究開発助成を受けたものである。 参考文献

1) REHVA : COVID-19 guidance document version4, 2021

 小森、山中、小林智広、崔ナレ、小林典彰: 横風気流下における局所排気装置の汚染物捕集性能に関する研究(その2)フード形状及び汚染源の発熱の有無が汚染物捕集性能に及ぼす影響,日本建築学会大会学術講演梗概集,ppl453-1454,2021.9
 張 靱,山中 俊夫,小林 知宏,崔 ナレ,小林 典彰,吉原 隼:診察室における感染予防対策としての局所換気システムの性能評価に関する研究(その1)CPD 解析によるヒト由来飛沫核の拡散挙動と換気による除去性能の検討,令和3年度 (第51回)空気調和・衛生工学会近畿支部学術研究発表会論文集,A-16

4) 吉原 隼,山中 俊夫,小林 知宏,崔 ナレ,小林 典彰,張 靱:診察室におけ る感染予防対策としての局所換気システムの性能評価に関する研究(その2)対 面者からの飛沫核暴露による在室者の感染リスクに関する検討,令和3年度(第 51回)空気調和・衛生工学会近畿支部学術研究発表会論文集,A-17

5)Riley EC, Murphy G, Riley RL. Airborne spread of measles in a suburban elementary school. American Journal of Epidemiology 1978; 107: 421-432.

診察室における感染予防対策としての局所換気システムの性能評価に関する研究 (その6)各給気方式における模擬唾液飛沫による感染リスク評価

Performance of Local Exhaust System as Prevention Measure of Infection in Consulting Room (Part6) The Effect of Air Supply Systems on Infection Risk Using Artificial Saliva

○吉原 隼(大阪大学)山中 俊夫(大阪大学)小林 知広(大阪大学)崔 ナレ(大阪大学) 小林 典彰(大阪大学) 張 靱(大阪大学)藤原 碧海(大阪大学) Jun YOSHIHARA^{*1} Toshio YAMANAKA^{*1} Tomohiro KOBAYASHI^{*1} Narae CHOI^{*1} Noriaki KOBAYASHI^{*1} Ren ZHANG^{*1} Aoi FUJIWARA^{*1} *1 Osaka University

In this paper, a local exhaust system is introduced into the consultation room to explore more effective ventilation measures in order to prevent infection. In order to reveal the effect of the combination of floor-supply ventilation and hoods, we compared the case of air supply system using a swirling-type floor diffuser and a deeplacement type floor diffuser. This study caryyied out the experiment in a full-scale model and infection risk due to exposure to droplet nuclei from infected person in front was estimated by using artificial saliva.

はじめに

2019年秋より感染が確認された新型コロナウイルス 感染症 (Coronavirus disease 2019: COVID19) の感染経路 の一つとして、空気中を漂う飛沫核による空気感染が 挙げられる。一般に室全般換気は近接会話時には効果 が期待されない¹⁾ことから、本研究では咳や会話によっ て排出された飛沫核に対し、局所排気装置(フード)を 用いて除去することを狙う。小森ら²によりフードの 捕集性能は周辺気流に大きく影響されることから、静 穏な気流場を形成することのできる全面床吹き出し空 調との併用換気システムを提案する。既報³⁾において、 全面床吹き出し空調と組み合わせた場合、給気量1,000 m³/h (50 ACH) において発生源(患者)の頭上に適 切な排気量でフードを設けることで対面者(医者)の COVID19に対する感染リスクは十分に小さくなること が示された。本報では、前報⁴⁾に引き続き、全面床吹 き出し空調とフードの組み合わせの効果を検証するた め、旋回流型床吹き出しディフーザー及び置換換気型 床吹き出しディフーザーを用いて給気した場合と比較 する。また発生源の位置が特定しやすい診察室(フー ド位置:患者頭上) 以外にも、診察室以外への応用(フー

ド位置:人体間)を検討する。前報⁴⁾ではフードの捕 集率及び医者の口前濃度について、会話による飛沫核と して発生させたトレーサーガス (CO_2 : He = 5:3)を用 いて算出した結果について記載したが、本報では、飛 沫・飛沫核の挙動を蒸発や沈着も考慮して評価するため に、トレーサーガスと同時に噴霧化し発生させた、模擬 唾液粒子から算出した感染リスクの結果について、前報⁴⁾ (CO_2 から算出)との比較も踏まえて報告する。

1. 実験概要

1.1 実験設備及びパラメーター

実験空間の鳥観図を Fig.1 に示す。室内に HEPA フィ ルターを通した空気を給気することで、クリーンルーム として機能するチャンバーを構築した。また既報³⁾に 引き続き、給気量は 1,000 m³/h (50 ACH) で固定される。 フード形状は小森ら²⁾において、横風気流下で捕集性 能の最も高かったフランジ型を用いる (Fig.2)。実験条

(b) Emmision Conditions

Fig.4 Emmision Conditions 件の概要を Fig.3 に示す。実験条件は前報⁴⁾と同じであ り、全面床吹き出し空調、旋回流型床吹き出しディフー ザー、置換換気型床吹き出しディフーザー、の三種類 の換気手法を比較する。発生源の位置が特定しやすい 診察室(フード位置:患者頭上(Fig.3 (a))及び診察室 以外への応用(フード位置:人体間(Fig.3 (b))を検討 する。それぞれの条件に対してフードの排気量を8段 階で変化させる(計48条件)。

1.2 実験条件及び模擬唾液飛沫・飛沫核発生方法

トレーサーガス及び模擬唾液粒子の発生条件を Fig.4 に示す。会話により患者の口から発生した飛沫核を、気 流と共に挙動するものとして、空気と同じ密度とするた め CO₂: He = 5:3 として混合させる。また蒸発、沈着 の影響を考慮するために、模擬唾液粒子を噴霧化させて 発生する。ネブライザーにトレーサーガスを吹き込むこ とでトレーサーガスと模擬唾液粒子を同時に発生させ る。模擬唾液は尾方ら⁵⁾を参考にし水 1L に対して、塩 化ナトリウム 12gとグリセリン 76gを加え、粘性を調 整した。風速、風量は前報³⁾に記載する発話時の呼気風 速及び呼吸量の測定実験により得られた風速 0.30 m/s、 角度 11.9° (鉛直下向き)、呼吸量 5.21 L/min (口の大 きさ 17.04 mm × 17.04 mm) を再現するため、吹き出 し口を 3D プリンターで作成した(Fig.5(d))。また呼気 風速及び呼吸量の測定実験³⁾はマスクをせずに行ったこ とから、マスクをしない場合の会話を再現する。実験に 用いたネブライザーの会話の再現性を確認するため、天 井排気口 (Fig5 (a))、発生直後 (Fig5 (b))、医者口前 (Fig5 (c)) での粒径及び個数の測定を行った。また測定には天 井排気口及び医者口前はハンドヘルドパーティクルカウ ンター (3889-01 KANOMAX)、発生直後の点において は PDA (Dantec Fiber PDA) を用いた。 PDA 装置及び測 定原理については同報^のに記載する。また計測した全粒 子の代表粒径として、D_s: ザウター径算を式(1)を用い て算出した。

$$D_s = \frac{\sum n_i \cdot D_i^3}{\sum n_i \cdot D_i^2} \tag{1}$$

: ザウター径 D_{c} $\begin{bmatrix} \mu m \end{bmatrix}$: 各粒形範囲の個数 [-] n_i

: 各粒形範囲の代表粒形 [µm] D_i

Ceiling Exhaust (1,000 m3/h) mesuring point (Particle Counter) mesuring point (PDA) 1cm (b) Emission point (a) Ceiling Exhaust (Particle Counter) (PDA) mesuring point (Particle Counter) (c) Front of Doctor Mouth (d) Emmision (Particle Counter) (Nebrizer) Fig.5 Picture of Mesurment 0.3-0.5 um 0.5-1.0 um -1.0-3.0 um 3.0-5.0 µm 5.0-10.0 µm --10.0- um /m3] 9.E+06 8.E+06 Concentration[/ 7.E+06 6.E+06 Emission Start Emission Stop 5.E+06 4.E+06 3.E+06 2.E+06 1.E+06 0.E+00 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 time [min]

Fig.6 Number Consentration at Ceiling Exhaust (Hood 0 m³/h, Ceiling Exhaust 1,000 m³/h, Swirng Typr Diffuser)

 r_r

а

b

$$r_{r} = \sqrt[3]{\int_{a}^{b} r^{3} dr \cdot \frac{1}{b-a}}$$

$$: \text{ (2)}$$

A-8

Table 1 Droplet SizeTransformation(Source : W, Yang et al.⁸⁾)

Experimentally Derived RH D_{eq}/D_i* ratios 10% 0.391 20% 0.395 30% 0.398 40% 0.401 0.427 50% 60% 0.437 70% 0.499 80% 0.464 90% 0.502

*Deg : Equilibrium, or final, diameters

D_i: Initial droplet diameter

(d-1) Floor-Supply Ventilation
 (d-2) Swirling Flow Type Diffuser
 (d) In front of Doctor Mouth (hood 0 m³/h, Ceiling Exhaust 1,000 m³/h)

Fig.8 Frequency Distribution of Diffrent Mesurment Point (Comparsion to Previous Reserch⁷)

Fig.9 Comparsion of n_d (quanta Consentraton in front of Doctor Mouth) Calculated by Tracer Gas and by Artificial Saliva

測定結果より算出した粒径分布及びザウター径を Fig. 8 (a), (b), (d) に示す。また既往研究⁷⁾ における数字をカ ウントした場合の粒径分布を Fig.8 (c) に示す。結果よ り、発生直後(Fig. 8 (b))は既往研究と比較してかなり 粒径が大きい。これは咳の粒形分布にも近く、速度は呼 気を再現できている(0.30 m/s)が、一般に気流に乗る とされない、大きな粒径(10 µm 以上)のものが多く発 生していたことが分かる。また定常状態の確認及び粒子 のバックグラウンドノイズの測定として、70分間発生 させた場合の排気口で測定した個数濃度の時刻応答変化 を Fig.6 に示す。結果から、HEPA フィルターを通して の給気及び大きな換気量(1,000 m³/h = 50 ACH)の影 響によりバックグラウンドノイズは非常に小さい事が分 かる。また個数濃度は変化し続けており、名目換気時間 は1.2分であることから、ネブライザーが定常的に粒子 を発生していないことが考えられる。このことから Fig. 7に示す様にノイズが十分に小さくなることを確認した 後、定常待ち5分間、定常15分間で実験を行った。

2 感染リスク評価手法

感染リスク評価には前報⁴⁾同様、Welles&Riley Modelを用い、 n_d : 医者の口前quanta 濃度及び、 REHVA⁴⁾が用いた5%という値を基準に、 $t_{5\%}$: 感染リ スクが5%に達するまでの時間を算出した。 n_d : 医者の 口前quanta 濃度は式(3)で与えられる。

$$n_d = q_{pm} \cdot \eta = \frac{q}{Q} \cdot \frac{C_d}{C_{pm}} \tag{3}$$

 n_d : 医者の口前quanta濃度 [quanta/m³]

q : 感染者の単位時間当たりのquanta生成量 [quanta/h]

 q_{pm} : 完全混合時の室quanta濃度[quanata/m³] η : 完全混合濃度に対する医者の口前模擬唾液粒

- η : 完全混合濃度に対する医者の口前模擬唾液粒子体積濃度比
 Q : 室換気量 [m³/h]
- C_d: 定常状態での医者の口前模擬唾液粒子質量濃度 [g/m³]
- Cpm : 完全混合時の室平均模擬唾液粒子質量濃度[g/m³]

模擬唾液粒子の発生量は発生前後の模擬唾液の減少 量を測定することにより推定する (Fig. 7)。C_d: 医者の 口前模擬唾液粒子質量濃度及び、C_{pm}: 完全混合時の室 平均模擬唾液粒子質量濃度の算出のためには、水分が 蒸発し液的平衡状態になった状態での密度及びその粒

Fig.10 Comparison of n_d (quanta Consentraton in front of Doctor Mouth) between each Cases (Assuming Diameter : D×0.5)

径が必要となり、既往研究⁸⁾では、相対湿度 10~90% で 0.391~0.502 倍となるとされている (Table 1) ことか ら、最終粒粒径を1.0, 0.40, 0.45, 0.50 倍として計算し た場合のn_d: 医者の口前 quanta 濃度及び CO₂ から算出 したn_dの算出結果をFig.9に示す。最終粒径が1.0倍(変 化しない)場合は、CO2から算出した場合より大きく 下回っており、この状態では発生量を過大に評価して いるため、評価方法として適していないことが分かる。 一方 0.4 倍とした場合、旋回流型床吹き出し(Fig. 9(a)) で、CO,から算出した場合を上回る結果となった。沈着、 付着の影響を考えると、模擬唾液粒子から算出した結 果はCO,から算出した結果より小さくなると予測され るが、これは、ネブライザーの発生量が一定ではない こと(Fig. 6)や、模擬唾液粒子では最終粒径が 0.4 倍 とは限らない事が原因だと考えられる。実際 0.5 倍で計 算した場合は旋回流型吹き出し(Fig 9. (a))の場合でも よく一致しており、本報では最終粒径が、初期粒径に よらず 0.5 倍になるとして計算する。

3 感染リスクの算定結果と考察

最終粒径が、初期粒径によらず 0.5 倍になるとして計 算した、各条件における、n_d: 医者の口前 quanta 濃度 の算出結果を Fig. 10 に t_{5%}: 感染リスクが 5% に達する までの時間の算出結果を Fig. 11 に示す。Fig. 9 に示すよ うに、全面床吹き出しの場合において、CO2から算出 した結果よりも感染リスクを低く算出しているものの、 その傾向は前報やと変わらず、「全面床吹き出し空調> 置換換気型床吹き出しディフーザー>旋回流型床吹き 出しディフーザー」の順番で感染リスクが低くなって いる。またフードが患者頭上の場合と、人体間にある 場合とを比較すると、全面床吹き出し空調においてフー ド流量が 200 m³/h 以上で患者頭上にある場合、感染リ スクの低下(フードの効果)が非常に大きくなり、全 面床吹き出し空調とフードとの組み合わせの効果が読 み取れる。またフードが人体間にある場合は、フード

Fig.11 Comparsion of t_{5%} (Time to Reach Infection Risk 5% between each Case (Assuming Diameter : D×0.5)

排気量を上昇させても効果があまりないことから、診 察室以外への応用にはさらなる改善が必要だと考えら れる。また t_{5%}: 感染リスクが 5% に達するまでの時間 は全面吹き出し空調では、フード導入以前から十分に 低い(24 h 以上)事や、換気量が一人当たり 500 m³/h と大きいことから、フード導入の効果より、換気方式 の効果の方が大きいという結果となった。

おわりに

本報では前報4)と同様の実験について、模擬唾液飛沫 から算出した感染結果に基づき考察した。結果、全面床 吹き出し空調とフードの組み合わせの効果が示され、ま たフードが人体間にある場合で大きな効果は見られな かった。今後は一般的な換気量の場合の実験が求められる。

謝辞

なお、本研究は、科研費基盤研究(B)21H01492、及び令和2年度大阪 大学医学部新型コロナウイルス対策研究開発助成を受けたものである。 参考文献

1) REHVA : COVID-19 guidance document version 4,2021

2) 小森美晴、山中俊夫、小林知広、崔ナレ、小林典彰: 横風気流下におけ る局所排気装置の汚染物捕集性能に関する研究 (その2)フード形状及び 汚染源の発熱の有無が汚染物捕集性能に及ぼす影響、日本建築学会大会学 術講演梗概集,pp1453-1454,2021.9

3) 吉原隼、山中俊夫、小林知広、崔ナレ、小林典彰、張靭:診察室におけ る感染予防対策としての局所換気システムの性能評価に関する研究,(その 4) CFD 解析及び実大模型実験による会話飛沫核に伴う対面感染リスクに関 する検討,空気調和・衛生工学会大会学術研究発表会論文集 {2022.9.14~ 16 (神戸) },pp 85-88

4)藤原碧海、山中俊夫、小林知広、崔ナレ、小林典彰、吉原隼、張靱:診 察室における感染予防対策としての局所換気システムの性能評価に関する研 究、(その5)各給気方式におけるトレーサーガスによる飛沫核感染リスク 評価, 空気調和 · 衛生工学会近畿支部学術研究発表会論文集, 2023. 3, 揭 載予定

5) 尾方壮行、市川真帆、堤仁美、有賀隆男、堀賢、田辺新一:模擬咳 発生装置による飛沫沈着量分布の測定、日本建築学会環境系論文集,83-743 (2018-1), pp. 57-64

6) 張靭、山中俊夫、小林知広、崔ナレ、小林典彰、吉原隼、藤原碧海:診 察室における感染予防対策としての局所換気システムの性能評価に関する研 (その7)咳による飛沫の拡散特性とその対策の検討,空気調和・衛生 工学会近畿支部学術研究発表会論文集,2023.3,掲載予定

7) L. Morawska, G.R. Johnson, Z.D. Ristovski, M. Hargreaves, K. Mengersen, S. Corbett, C.Y.H. Chao, Y. Li, D. Katoshevski : Size distribution and sites of origin of droplets expelled during expiratory activities, 2009, Journal of Aerosol Science, 40(3). pp. 256-269

8) Wan Yang, Linsey C. Marr : Dynamics of Airborne Influenza A Viruses Indoors and Dependence on Humidity, PLoS ONE, June 2011, Volume 6, Issue6, e21481

診察室における感染予防対策としての局所換気システムの性能評価に関する研究 (その7)咳による飛沫の拡散特性とその対策の検討

Performance of Local Exhaust System as Prevention Measure of Infection in Consulting Room (Part 7) Study of Spreading Characteristics of Droplets from Coughing and the Countermeasures

山中 俊夫(大阪大学) 崔 ナレ (大阪大学) 小林 知広 (大阪大学) ○張 靭(大阪大学) 小林 典彰 (大阪大学) 隼 (大阪大学) 藤原 碧海 (大阪大学) 吉原 Toshio YAMANAKA^{*1} Ren ZHANG^{*1} Narae CHOI^{*1} Tomohiro KOBAYASHI^{*1} Noriaki KOBAYASHI^{*1} Jun YOSHIHARA^{*1} Aoi FUJIWARA^{*1} *1Osaka University

In order to understand the generation characteristics of cough droplets while wearing a mask and thus be able to reproduce the behaviour of droplets realistically. This paper used PDA (phase doppler anemometer) to measure the velocity and diameter of droplets escaping from the front and side slits of the mask. Also, the pressure loss characteristics of the mask material were also measured in order to investigate the effect of the passability of the mask material on the particle generation characteristics.

1. はじめに

コロナの空気感染、飛沫感染が明らかになり、感染 換気対策の重要性が認識された。また、コロナの初確 認から3年が経過した、海外で"脱マスク"が進んで おり、アフターコロナを見据えた対策が必要になる。 本研究では、流行中及び流行後の診療室における感 染予防策に着目し、局所換気の導入を提案する。

前報¹⁾より、マスク着用しない場合は、局所排気シ ステムは咳によって生じる飛沫の拡散抑制に十分で はないことが示唆された。局所排気システムの能力範 囲を更に検証する為に、マスクから漏れた咳飛沫につ いて考察する必要がある。そこで、本報では、マスク 着用時の咳飛沫の発生性状を把握することを目的と し、PDA 位相ドップラー流速計を用いてマスクの正面 及び側面隙間から漏れた飛沫の発生性状を計測した。 また、マスク素材の圧力損失特性を測定し、素材の 通過性が飛沫の発生性状に与える影響を検討した。

2. マスク素材の圧力損失特性

本研究では同社製の3種類医療用マスク及び一般 的な不織布マスクを使用した。3種類医療用マスク は横175mm×縦95mmと同じであり、それぞれは「JIS T9001: 医療用マスク・一般用マスクの性能要件及び 試験方法」に定めた医療用マスククラスI (MS1)、ク ラスⅡ(MS2)、クラスⅢ(MS3)に適合する。簡易不 織布マスクの寸法(SNW)は横175mm×縦94mmである。 各マスク素材の通気特性を定量的に比較するために、 自由場とみなせる大空間を有する大阪大学の実験室 内にて測定を実施した。

マスク圧損実験で使用する測定システムを Fig.1、 に示す。アクリルパイプの片端にマスクをかけ、先 端から 20mm の壁面に 4 つの穴を開け、4 つの測定孔 はそれぞれビニルチューブに接続され、コネクタを

Fig.1 Pressure loss measurement system

介して1本のチューブに収束し、微差圧計(DP45, Validyne 社製)の片側に接続されている。微差圧計 の反対側は、室内の自由場に直接接続されており、流 量を変えてマスク前後の圧力差を計測した。測定シス テムには、動力源にダクトファンを使用し、風量は 超音波流量計(TRX50D-C/5P、ATZTA)を用いて測定 する。超音波流量計の信号は電流の形で、微差圧計 の信号は電圧の形で出力され、データロガー(NR-500, KEYENCE 社製)を用いて記録される。

マスク素材の圧力損失特性は Fig.2 に示す。図に示 すように、マスクの圧力損失 Δ Pは通常的な配管の 場合と異なり、 V^2 に比例せず、低レイノルズ数の流 れ特性を示す。結果から、3種類の医療マスクの圧損 特性が近く、簡易マスクの圧力損失が医療用マスク より小さく、通過性が高いことがわかった。

3. 位相ドップラー流速計 PDA

位相ドップラー流速計 PDA とはレーザー流速計 (LDV、LDA)の応用技術の一種である。他のレーザー 流速計と同様に、2本のレーザーの交差点に通過した 粒子からのドップラ信号を検出器で測って、周波数差 から流速を計測する。それに加え、PDA は空間的に離 れた2台の検出器を使い、2つ検出器のドップラ信号 に位相差が粒径に比例することで粒径と速度を同時 に測定できる。本研究ではPDA (FiberPDA, Dantec 社製) を使い、レーザーの交差点での粒子一方向速度成分を 測定する。精度高い粒径測定範囲は 0.5 μ m ~ 1mm で ある。PDA 装置の構成は **Fig.3** に示す。

Fig.3 Phase doppler anemometer (PDA)

4. 実験方法

PDA を用いて、マスク着用して咳をする際にマスク の正面及び側面隙間から漏れた飛沫の速度と粒径を 計測した(Fig.4)。実験で使用した PDA のレーザーに よる人体への傷害を考慮し、模擬咳発生装置を使用 して咳を発生した。また、顔輪郭を再現するために、 咳発生装置はマネキンと組み合せた。咳発生装置に は蒸留水を使用して、飛沫を模擬した。

Fig.4 Droplet measuring device

本実験の測定点はマスク正面での一箇所、及びマス ク側面隙間での一箇所である。Fig.5示すように、正 面測定点はマスク正面から5mmにあり、前向き速度を 測定した。側面隙間測定点は開口部の中心高さで、医 療用マスクの端から5mm(簡易マスクは15mm)の距離 で離れ、横向き及び後向きの速度を測定した。正面測 定点では、4種類のマスクをつける条件とマスクなし の参照条件、計5条件、側面測定点では、4種類のマ スクごとに2方向速度、計8条件を測定した(Table1)。

Fig.5 Measurement points and the direction

Table1 Measurement condition

Point	Case	Direction	Mask			
	FX_N	Х	No Mask			
Front	FX_MS1	Х	Medical Mask Class I (MS1)			
	FX_MS2	Х	Medical Mask Class II (MS2)			
	FX_MS3	Х	Medical Mask Class III (MS3)			
	FX_SNW	Х	Sample No-woven Mask(SNW)			
	SY_MS1	Y	Medical Mask Class I (MS1)			
	SY_MS2	Y	Medical Mask Class II (MS2)			
	SY_MS3	Y	Medical Mask Class III (MS3)			
Cido	SY_SNW	Y	Sample No-woven Mask(SNW)			
Side	SX_MS1	-X	Medical Mask Class I (MS1)			
	SX_MS2	-X	Medical Mask Class II (MS2)			
	SX_MS3	-X	Medical Mask Class III (MS3)			
	SX SNW	-X	Sample No-woven Mask(SNW)			

咳発生に伴うマスクの濡れを考え、3秒間隔で咳を 発生、5回咳ごとにマスクを交換した。十分なデータ を取るために、正面測定点では50回以上、側面測定 点では75回以上の咳を計測した。

5. 測定結果

5.1 流速と粒径との相関性

マスクによって妨げられる飛沫の速度は、飛沫の大 きさに影響される可能性を考え、マスクから漏れた 飛沫の速度と粒子径の相関性を検討した。Fig.6の横 座標は粒径、縦座標は速度、点の色はカーネル密度 を表す。図より、今回測定したすべでの条件において、 粒子径と速度の相関は有意ではなく、異なるサイズ の飛沫の速度は、それぞれ広く分布している。

Fig.6 Kernel density for particle velocity-size

5.2 飛沫速度分布

1) 正面測定点

正面測定点ににおいては、マスクなし条件での速 度測定結果は Fig.7 に示し、平均値は 8.74m/s、最大 値 21.33m/s と測定し、正規分布が見られた。3 種類 の医療マスク条件に粒子は検出されなかった。簡易不 織布マスク条件には少量の粒子データを得たが、平 均速度は 0.31m/s までに大幅に低下し、マスクが正 面への飛沫拡散防止に有効であることが分かった。

Fig.7 Velocity distribution at the front measurement point

2) 側面測定点

側面測定点においては、各条件の横方向速度分布を Fig.8a、後ろ向き速度分布をFig.8bに示す。側面測 定点での平均横向き速度は、外向きSY_MS1(2.32m/s) >SY_MS2(2.08m/s)>SY_MS3(1.75m/s)>SY_SNW(1.05m/ s)、平均後ろ向き速度はSX_MS1(3.49m/s)>SX_ MS3(3.27m/s)>SX_MS2(2.78m/s)>SX_SNW(2.28m/s) と なっている。また、最大速度は、横向き速度は8.93m/s、 後ろ向き速度は11.42m/sに達す。マスクを着用して 咳をする際、側面隙間から漏れる飛沫の初速度が速 く、飛沫拡散の再現にはその影響を無視できないと考 えられる。素材通過性が飛沫流速に及ぼす影響につ いては、通過性がより良い簡易マスクの速度は著し く小さいが、3つの医療マスクの速度が近似していお り、速度と通過性との相関は明らかになっていない。

横方向速度は、各条件で10~20%のv<0データが 見られ、マスクなしの条件より頻度高い。マスク側 面隙間から漏れた粒子の運動は、完全に外向きでは なく、一定の広がり角度を持っている拡散すること を分かった。しかし、本実験で用いたPDA 流速計は 多方向速度成分を同時に測定できない為に、広がり

Fig.8 Velocity distribution of each condition at the side measurement point

Fig.10 Size distribution of each condition at the front and side measurement point

角度を検討し難い。

飛沫発生角度 A 及び速度大きさは Fig.9 のように定 義され、それぞれは式1と2により横向き及び後向 き平均速度から算出した。3 種類マスクの平均飛沫発 生角度 A は 27.39°、速度は3.59m/s、簡易はマスク 発生角度 A は 24.71°、速度は 2.51m/s と得られた。

Fig.9 Definition of occur angle and velocity magnitude

5.3 飛沫粒径

本実験のすべでの条件での粒径分布は Fig.10 に示 しように、マスクなしとマスク側面隙間(MS1、Y 方向) の分布が近い。マスクが側面隙間から漏れる飛沫の粒 径分布に及ぼす影響は薄いことが示唆された。本実 験で得られた粒径データ全体を用いて、咳による発 生される飛沫の粒径平均値は1.89 µm、平均ザウター 径は6.18 µm(式(3)より)と算出した。

ӊ, 山を一長 SD =
$$\frac{\sum d^3}{\sum d^2}$$
 (3)

6. まとめ

本文で、位相ドップラー流速計 PDA を用いて、4 種 類のマスクを着用する時にマスクの正面及や側面隙 間から漏れた咳由来飛沫の速度と粒径を計測し、以 下の結果を得られた。

マスクが正面からの飛沫拡散防止には非常に有効である。しかし、防護性が高いと思われる医療用マスクでも、側面から漏れ出す粒子の平均速度は3.59m/sで、最大速度は11.42m/sを超える。医療用マスクの場合は平均飛沫発生角度Aは27.39°である。

2) マスクが側面隙間から漏れる飛沫の粒径分布に及 ぼす影響は薄く、咳による発生される飛沫の粒径平 均値を1.89 μm、飛沫の平均ザウター径は6.18 μ mである。

7. 考察

本論文では、マスク正面と側面から漏れる飛沫の 速度と粒径のみを測定しているが、実際にはマスク の上下の隙間を無視できず、さらなる測定しなけれ ばならない。

また、本実験でマスクの隙間から飛散する飛沫に は拡散角を持つことが分かったが、PDAの特性上、そ の角度を求めることができなかったため、可視化な どの手段でさらに検討する必要がある。

そして、本文ではマスク素材の通過性が飛散飛沫 の流速に及ぼす影響を検討したいと考えるが、3種類 の医療用マスクの通過性が類似しているため、流速 結果の差は少なく、より広範囲のマスクの試用が必 要である。

謝辞

本研究は、科研費基盤研究(B)21H01492、及び令和2年 度大阪大学医学部新型コロナウイルス対策研究開発助成を 受けたものである。

参考文献

1) 張,山中,小林,崔,小林,吉原:診察室における感染 予防対策としての局所換気システム性能評価に関する研究(その1) CFD 解析に基よる人由来飛沫核の拡散挙動 と換気による除去性能,空気調和・衛生工学会近畿支部 学術研究発表会論文集,2022.3,117
卓上熱上昇気流を用いた感染予防対策に関する研究 (その1)置換換気室に導入した場合の会話発生飛沫の挙動 A Study on Infectional Prevention Measures Using Table Top Thermal Plume Airflow (Part1) Behavior Prediction of Droplets Generated by Conversation in Room with Displacement Ventilation

(大阪大学) (大阪大学) ○難波 和佳子 山中 俊夫 小林 知広 (大阪大学) ナレ (大阪大学) 崔 (大阪大学) 盛 紹宇 Wakako NAMBA*1 Toshio YAMANAKA*1 Tomohiro KOBAYASHI*1 Narae CHOI *1 Shaoyu SHENG*1 *1 Osaka University

Since the coronavirus pandemic, masks and partitions have been used to deal droplet infection, but those methods have many problems. Therefore, we aimed to block the spread of droplets and droplet nuclei by an thermal plume. In this study, CFD analysis was used and exhaled air and droplets were assumed. The results showed that droplet and exhalation diffusion could be intercepted at 2 m/s exhalation, as in conversation. In addition, it is expected that the droplets will be carried on the upward airflow, which will improve ventilation efficiency.

はじめに

新型コロナウイルス感染拡大以降、感染症対策が注目 されている。飲食空間や会議室等の会話空間における飛 沫感染や空気感染には、マスクやパーテーションで物理 的に遮る対策が多く採られるが、視界が遮られたり相手 に声が届きにくい等、問題点があると考えられる。

また、換気効率の点で評価される置換換気は、上昇気 流を用いることで汚染空気を希釈することなく室上部へ 移動できる。しかし、会話により発生した飛沫は呼気気 流により上昇気流から外れる場合もあると予想される。

そこで、会話をする感染者から発生した飛沫・飛沫核 が対面する非感染者へ到達することを防ぐ方法として、 人体間に上昇気流を発生させることを提案する。本研究 では、置換換気と組み合わせ、卓上に熱源を置くことで 熱上昇気流を発生させた。また、会話時に人の口から発 生する飛沫・飛沫核のうち、飛沫については瞬時に水分 を失い飛沫になると仮定し、全てを飛沫核として扱った。 上昇気流が飛沫核の挙動に及ぼす影響について CFD 解 析で検討した結果を報告する。

1. 解析概要

1.1 解析領域

Fig. 1 に解析空間、Table 1 に解析手法、Table 2 に境 界条件を示す。解析空間は4人がテーブルを囲む会話空 間を再現した。放射解析は行わず、壁面条件は断熱とし た。模擬人体の発熱量は対流熱のみを想定し40 W/人 とした。さらに、幅50 mmのパネルを机の中央に設置し、

Table 1 Boundary condition

Software	Cradle STREAM V2022
Turbulence model	Standard k- ϵ model
Algorithm	SIMPLE
Discretization scheme of convection component	QUICK
Number of cells	1,388,618

Radiation			No radiation	
	Wall		Non slip	
	DV diffuser	Flow rate	$300 \ [m^{3}/h] \times 2 = 600 \ [m^{3}/h]$	
Inlat	D v uniuser	Temperature	20 [°C]	
milet	Mouth	Velocity	2 [m/s]	
	Wioutii	Temperature	32 [°C]	
	Dia	meter	0.01, 0.1, 1 [µm]	
	De	ensity	1,375 [kg/m ³] (Fig. 3)	
Particle	Coefficient	of restitution	0	
	Resistanc	e coefficient	0.44	
	Ve	locity	2 [m/s]	
	Genera	tion time	10 [s]	
	Amount	Actual number	100,000	
		Parcel number	300	
Outlet	Exhaust		Natural outflow	
Heat load	Simulated	human body	$40 [W/person] \times 4 = 160 [W]$	
neat load	Hea	t panel	0, 50, 100, 200 [W]	
Outlet Heat load	Amount Ex Simulated Hea	Actual number Parcel number haust human body t panel	100,000 300 Natural outflow 40 [W/person] × 4 = 160 [W] 0, 50, 100, 200 [W]	

 Table 2 Boundary condition

Fig. 2 Analysis procedure

面発熱させることで上昇気流を発生させた。換気手法は、 気流場の乱れが少ない置換換気を採用し、壁面下部の DV ディフューザー2つから給気、天井中央1か所で排 気した。濃度境界面を上昇気流に影響がない高い高さに 設定するため、給気量は600 m³/hとした。模擬人体の うち一体は感染者で会話によりウイルスを発生する場合 を想定した。感染者の口(床上1100 mm)から呼気を 模擬した給気を2 m/s³⁾で行い、飛沫を模擬した粒子を 発生させた。解析はパネルの発熱量と粒径を変化させた。 解析条件を Table 3 に示す。

1.2 粒子解析概要

解析手順を Fig. 2 に示す。定常解析で気流場を求めた 後、20 秒間非定常解析を行った。非定常解析でも気流 場は解いている。粒子は前半 10 秒のみ発生させ、後半 10 秒は挙動を追った。Fig. 3 に想定した飛沫の蒸発過程 を示す。粒径 D の模擬飛沫²⁾(水 1L に対し、塩化ナト リウム 12 g とグリセロール 76 g)に含まれる水分が完 全に蒸発し、粒径 0.4D の飛沫核になるとした。粒子密 度には飛沫核密度を設定し、式(1)より算出した。

粒子吹き出し速度は呼気と等しく、広がり角は5度とした。沈着した粒子は不活性化するとし、反発係数は0、抵抗係数は0.44とした。基本的な粒子挙動を検討するため、粒子解析に乱流拡散の影響は考慮していない。

$$\rho_{nuclei} = \frac{M_{nuclei}}{V_{nuclei}} = \frac{M_{NaCl} + M_{Glycerol}}{0.4^3 \cdot V} \qquad -(1)$$

- ρ_{nuclei}:飛沫核密度 [kg/m]

M_{NaCl}:飛沫1L当たりのNaclの質量[kg]

M_{Glycerol}:飛沫1L当たりのグリセロールの質量 [kg] _V: 0.001 [m³]

Table 3 Analysis cases

		Steady	Transient
** . 1 . 1	0	Case S_0W	Case T_0W
Heat load of heat panel [W]	50	Case S_50W	Case T_50W
	100	Case S_100W	Case T_100W
r	200	Case S 200W	Case T 200W

Fig. 3 Calculation of droplet density

2. 解析結果と考察

2.1 呼気分布

定常解析結果の温度・風速の鉛直分布、規準化呼気濃 度の水平分布を Fig. 4 に示す。発熱体により上昇気流 が発生し、温度成層が形成され置換換気の温度・濃度分 布となっている。呼気濃度の分布より、Case S_0W で は排気気流により排気口の方向に呼気が流れているのに 対し、Case S_50W, 100W, 200W の発熱を行った条件で は発熱を行った位置で水平方向の呼気拡散が止まってい る。呼気は上昇気流の巻き込み気流により、上昇気流と 共に室上部へ運ばれたと考えられる。

次に、発熱を行った3条件を比較する。温度分布及び 風速分布より、パネルの発熱量が多くなるほど上昇気流 が強く発生し、気流の到達高さも高いことがわかる。濃 度分布をより、Case S_50 Wで室周辺の呼気濃度が高く なった。よって、Case S_100W, 200W 等発熱量が多い 場合には呼気衝突後も上昇気流を維持することができ、 呼気を効果的に排気できると考えられる。反対に、Case S_50W のように上昇気流が弱い場合は、呼気は誘引さ れるものの、低い高さに呼気を拡散してしまうと考えら れる。本報の条件では50 W と 100 W の間に有効な発 熱量の境界値が存在すると予測する。

2.2 粒子分布

非定常解析で粒子の挙動を考察した。Fig. 5 に粒子数の時系列変化を示す。計測面は図に示す直方体である。 Fig. 6 に平常解析 10, 15, 20 秒後の粒子分布を示す。

2.2.1 0.01 µm の粒子について

全条件において沈着は見られなかった。Fig. 5(b)より、 発熱量が多くなるにつれて直方体領内に浮遊する粒子数 が早く減少した。Fig. 6の粒子分布より粒子がより多く 気流に乗り室上部に排出されるためであると考えられ、 換気性能の向上が示唆される。

2.2.2 0.1 µm の粒子について

Fig. 6より、Case T_0W では徐々に沈降するものの空気中に長時間滞留するが、Case T_50W, T_100W,

T_200W では上昇気流位置で急激に沈降している。Fig. 5(c) より噴霧から沈着までに要する時間に着目すると、 Case T_0W では約14秒であるのに対し、発熱を行うと 約6秒である。早く沈着することで空気中の粒子濃度を 低くすることができると考えられる。Fig.6より、発熱 パネル付近に沈降した粒子が、上昇気流に乗り室上部に 排気される様子が確認できる。対面人体側への拡散を制 御できたといえ、飛沫拡散遮断効果があると考えられる。

2.2.3 1 µm の粒子について

1 μm の粒子は、Fig. 6 の 10 秒の結果より、パネル発 熱の影響はなく噴霧後すぐに沈着することがわかる。

まとめ

本研究では、熱上昇気流が会話発生飛沫の挙動に及ぼ す影響について、CFD 解析で検討した。結果、会話程 度の呼気粒子速度では、飛沫拡散を抑制し換気効率が向 上する可能性が示唆された。今後は、咳を想定した解析 や他の空調方式との併用について検討する予定である。

一謝辞一

本研究は、大阪ガス(株)の助成を受けたものである。ここに 記して謝意を表す。 ー参考文献-

1) 清輔ら: 空調方式の違いによる微粒子挙動に関する研究, 空気調和・衛星工学会論文集 No.305(August 2022)

2) 尾方ら:模擬咳発生装置による飛沫沈着領分布の測定,日本建築学会環境系論文集 83 巻 743 号, pp.57-64, 2018.1

3)Z.T.Ai, A. K. Melikov Airborn spread of expiratory droplet nuclei between the occupants of indoor environments: A review, Indoor Air 2018;28 500-524

Fig. 6 Particle distribution

エアロゾル拡散防止パーティションに関する基礎的研究(その 2) Basic Research on Partition Wall to Prevent Aerosol Diffusion (Part2)

○古川 涼吾(摂南大学) 堀江 昌朗(摂南大学) Ryogo FURUKAWA*1 Masaaki HORIE*1

*1 Setsunan University

Partition boards (sneeze guard) are installed at various locations to prevent direct inhalation of aerosols. Exhaled air, such as a cough or sneeze, flows toward the partition and then impinges on the wall surface. Aerosols disperse into the air and remain suspended in the air for a long time. The purpose of this study is to prevent or reduce the diffusion of aerosols in exhaled air impinging on partitions. In this report, numerical simulations and flow visualization experiments were conducted to study the effect of a new partition with a function to reduce aerosol diffusion at the tip.

1. はじめに

2019 年に初めて国内に感染が確認された COVID-19 に よって感染拡大により私たちの生活様式は大きく変化し た。私たち個人が行える感染対策としてマスクの着用、 アルコール消毒の徹底などが挙げられる。しかし、 COVID-19の感染種別が変更される予定により、私たちの 生活は徐々に元に戻ると期待されているが、感染防止の 意識は低くなると思われる。そのため、私たちが普段の 生活で意識することなく、社会全体で感染防止の維持や 向上といった対策が重要になると考えられる。例えば施 設や室内の換気の徹底,飛沫感染を防止するためのパー ティションの設置などが挙げられる。施設や室内の換気 は、部屋の大きさや、換気装置の性能、窓や家具の配置 などにより、十分な換気が行えない場合があり空気がよ どむ場所ではウイルスが含まれるエアロゾルが長時間浮 遊する可能性があるため注意が必要である。また、飲食 店をはじめ、様々な場所で使用されている平板タイプの パーティションだが、直接対面に位置する人にはエアロ ゾルが接触しない利点がある。しかし、エアロゾルがパ ーティションに衝突した後に室内に拡散してしまい、十 分な換気が困難な室内では、二次感染を引き起こす恐れ がある。また、寸法の大きなパーティションでは相手の 声が聞き取りにくいという新たな問題も生じている。ス ーパーコンピューター「富岳」を用いた飛沫の飛散に関 するシミュレーションでは¹⁾、特に換気扇が動作してい る空間においてはパーティションを設置することにより 感染リスクが大きく減少 ²⁾するとされているが空気のよ どむ場所が発生し扇風機などで換気のムラを減らすこと が重要であるといわれている。そこで著者らは呼気に含 まれるエアロゾルの拡散を防止するため、エアロゾル拡 散防止機構を設けたパーティションを考案した(特願 2021-088900)。本研究では、このエアロゾル拡散防止部 の有効性を検証するため、数値解析と可視化実験を行っ た。

2. エアロゾル拡散防止パーティション

粒形の大きいエアロゾルは空気中に拡散することなく 重力加速度の影響を受け机上や床などに落下する。また、 粒形の小さいエアロゾルはパーティションに衝突した後、 壁面に沿って四方に拡散する。そのため、パーティショ ン越しにエアロゾルが直接吹きかかることがないように するために、高さや幅を大きくしたものが数多く利用さ れている。しかし、エアロゾルは空気中に拡散され、浮

遊したままの状態となる。 そこで、パーティション に衝突したエアロゾルの 拡散を低減するために、 拡散防止パーティション を考案した。このパーテ ィションを用いた場合、 呼気はエアロゾル拡散防 止部に流入した後に滞留 するため、空気中への拡 散を低減することができ ると考えられる。

Fig.1 Prototype partition

3.数値シミュレーションおよび可視化実験方法 3・1 呼気量

数値シミュレーションで使用する咳、くしゃみの呼気 量を Fig.2 に示す。図の横軸は時間 t[s]、縦軸は流量 Q[0/s]であり、V は呼気の総流量である。実際の呼気量 を設定するために、人為的な咳(以下「咳」という)の呼 気量の測定実験を行った。測定は2021年8月2日に摂南 大学で20代の成人9名を対象に実施した。ここでは測定 した代表的な咳の呼気量を(a)と設定する。くしゃみにつ いてはGuptaら³³の研究で測定された呼気量を(b)と設定 した。くしゃみは咳に比べ流量は約5.6倍で流速は瞬間 的に約10倍であった。

3・2 数値シミュレーションモデル

Fig.3 に本研究で使用した数値シミュレーションモデ ルを示す。本研究では、人の口腔から発せられた呼気が パーティションに衝突した後の流動状態を確認するため に数値シミュレーションを行った。解析モデルは、人体 とパーティション、自由空間で構成されている。人体モ デルの形状は、Bondware 社製3D-CG ソフトウェア Poser11 の男性モデルを使用した。数値シミュレーションにおい ては、ANSYS 社製汎用熱流体解析ソフトウェア CFX2021 R1 を使用した。本解析モデルは成人が椅子に座った状態 を模擬しており、図の底部は机上を表している人体モデ ルの口腔から入口境界面(3cm²)³⁾を設け、Fig.2の咳とく しゃみの流量を設定し、呼気の温度を37℃にした。なお、 人体モデルからパーティションまでの距離と床からの高 さを 400mm とし、噴出角度は水平に対して約 15°下方に した。口腔内部の境界面以外の人体モデル表面と床及び パーティションは壁面とし、計算領域の外周部は気体の 流入出が可能である設定をした。本解析モデルの要素数 は約400万であり、有限体積法によるレイノルズ平均ナ ビエ・ストークス方程式を採用し、乱流モデルには SST (Sheer Stress Transport) モデルを用いた。ここで、 計算領域内の空間はすべて 25℃の空気で満たされてお り、無風の状態で呼気のみによる空気の流れを算出した。 なお、空気が室内に拡散する様子を詳細に解析するため、 拡散係数を設定しており、鈴木ら4 が行った給気量の少 ない室内空間での数値シミュレーションで用いられる値 $(\alpha = 5 \times 10^{-5} \text{m}^2/\text{s})$ を使用した。

3.3 可視化実験概略

可視化実験装置について Fig.4 に示す。咳の流量を疑 似的に発生させるため、コンプレッサー、レギュレータ、 電磁弁、スモークチャンバーを用いた模擬呼気発生装置 を構成した。呼気のトレーサーには煙発生装置で生成さ れたグリコールを主成分とするスモークをスモークチャ ンバーに溜めている。さらにスモークチャンバーの先に 人体モデルの口腔を模擬したパイプを数値シミュレーシ ョンと同様の条件で撮影領域に接続し、撮影領域上方か ら波長 532nm、出力 500mW のグリーンのレーザーシート を照射させる。レーザーシート面に垂直な方向から一眼 レフカメラで 30fps の動画で呼気中のスモークの流動状 態を撮影した。なお、本装置によって生成された呼気量 は Fig.2(a)の呼気量と近いものであった。

Fig.4 Outline of experimental apparatus

4. 数値シミュレーションの流動状態

Fig. 5の(i)は平板パーティションの場合、(ii)は拡散防止パ ーティションである。(i)の場合、壁面に衝突した呼気は壁 面に沿って四方に拡散され、底部に拡散した呼気は机上 に滞留することが確認された。また、くしゃみの場合、 咳に比べ短時間で四方に拡散しパーティション最上部付 近まで呼気が拡散した。一方、(ii)を用いた場合、呼気は 壁面に沿って拡散した後に拡散防止部に流入し、平板パ ーティションのように四方に拡散することも、机上に滞 留することもないことが確認された。また、くしゃみの ような流量と流速が大きい呼気でも拡散防止部に流入し ていることから、咳やくしゃみに関わらず拡散を防止し ていることが明らかになった。

(a) Coughing (i)Flat partition

Fig.5 Flow pattern of exhaled air

5. 可視化実験の流動状態

Fig. 6の(i)は平板パーティション、(ii)は拡散防止パーティションを用いた場合の流動状態について数値シミュレーション と可視化実験の結果を示す。(i)の場合、可視化実験において 壁面に衝突した模擬呼気は、数値シミュレーション結果 と同様に壁面に沿って四方に拡散し、底部に拡散した呼 気は机上に滞留され、呼気が壁面に衝突した際に発生す る、渦輪も可視化実験より確認することができた。それ に対して(ii)の場合は、拡散防止部にスモークが滞留して おり、周囲に拡散していないことが明らかになった。こ の可視実験結果より、呼気の流動状態は数値シミュレー ションとほぼ一致しておりエアロゾル拡散防止パーティ ションの有効性が検証された。

今後、拡散防止部にエアロゾルが効率的に流入するように、形状の最適化や拡散防止部に吸引条件を設けた数 値シミュレーションと可視化実験を実施する計画である。

(a) Analysis result (b) Flow visualization result (i) Flat partition

(a)Analysis result

(b) Flow visualization result

(ii) Partition with aerosol diffusion prevention function Fig.6 Comparison of flow pattern of exhaled air and flow visualization experiment

6. 結言

本研究では、エアロゾル拡散防止部の有効性を確認す るため、数値シミュレーションと可視化実験を行い以下 の結果が得られた。

- ・平板パーティションの場合、呼気は壁面に沿って四方 に拡散され、最上部付近まで拡散した。また、底部に 拡散した呼気は机上に滞留することが確認された。
- ・エアロゾル拡散防止パーティションの場合、呼気が拡 散防止部に流入しエアロゾルの拡散を低減することが 明らかになった。
- 可視化実験と数値シミュレーションを比較した結果流動状態はほぼ一致した。

参考文献

- 「富岳」によるウイルス飛沫・エアロゾル飛散シ ミュレーションと感染リスク低減対策の提案,ながれ:

 日本流体力学会誌40(2),pp.86-93,2021
- (学倉誠,室内環境におけるウイルス飛沫感染の予測とその対策,理化学研究所計算科学研究センター,2020.8.24, https://www.r-ccs.riken.jp/outreach/formedia/200824Tsubokura/ (参照 2022.2.14)
- 3) Gupta, J.K., Lin, D.-H., Chen, Q., "Flow Dynamics and Characterization of a Cough", *Indoor Air*, 19, pp.517-525, 2009.
- 4) 鈴木智也 相良和伸 山中俊夫 甲谷寿史 山下植也, "置 換喚起と放射パネルを併用した病室のセミパーソナル空 調に関する研究(その 3)病室における置換喚起時の汚染 物濃度分布予測",空気調和・衛生工学会学術講演論文 集(長野), pp.1413-1416, 2006.

金属強化ポリエチレン管を用いた天井レス冷暖房システムの性能評価 Performance Evaluation of Skeleton ceiling Heating and Cooling System **Using Metal Reinforced Polyethylene Pipe**

○中 村 厚 太 (安井建築設計事務所)

小林 陽一(安井建築設計事務所) Yoichi KOBAYASHI*1 Kota NAKAMURA*1

YASUI Architects & Engineers, Inc. *1

This study proposes skeleton ceiling heating and cooling system using metal reinforced polyethylene pipes.

Cold and hot water is run through a simple system, and heat transfer from the pipes is utilized.

The purpose of this study is to verify whether a simple system can be used to achieve this effect. The system is measured in both summer and winter environments. As a result, some effects were observed in both the summer and winter seasons. Further improvement of the system's performance will be the subject of future work.

1. はじめに

ZEB を実現するための方法として、金属強化ポリエチレ ン管を用いた天井レス冷暖房システムの検討を行う。

天井レス冷暖房システムは、既存建物にも容易に設置 可能かつ導入コストを削減できる方法として、スケルト ン天井に金属強化ポリエチレン管を設置し、その内部に 冷温水を循環させるという冷暖房システムである。

本システムの特徴は以下に示す通りである。

- パッケージエアコンは15年程度で更新が必要となる が、本システムは管内に冷温水を通すだけのシンプ ルな構造のため、更新頻度が減少する。
- ② 冷水 15℃、温水 30℃というように水温を一定に保つ ため、熱源の COP が上がり省エネに寄与できる。
- ③ 冷温水を直接搬送するため、空気を搬送する場合と 比べ搬送動力を削減できる。

本研究では、天井レス冷暖房システムが実際に設置さ れた空間について夏期、冬期2つの季節について実測を

行い、結果を確認する。

2. 実測概要

2.1 対象建物概要

安井建築設計事務所、本社・大阪事務所5階の一室(Fig. 1、実線部)にて実測を行った。本建物は RC 造 7 階建て であり、実測を行った室は中間階に位置している。実測を 行う室のシステム設置部分の床面積は 54.12 m²、天井高 は3.4mである。Fig. 1上の点線で囲んだ西側の空間は 簡易冷暖房システムあり、東側の空間はシステムなしと する。測定室は、Fig. 2に示すような一室を西側の空間 と東側の空間にパーティションとポリエチレンシートを 用いて2室に分割し、測定を行った。

2.2 システム概要

Fig. 3上段に本システムの模式図を示す。熱源は既存 の外気処理空調機用の冷温水を用いる。冷温水を循環さ せる金属強化ポリエチレン管は天井下地材に固定する。

管内に、夏期は冷水を冬期は温水を循環させ、室内と熱 交換を行う。管はFig. 1に示すような、弧を描く配置と

Fig. 2 Interior view of measurement room

することで、室内の総延長が長くなるよう配慮した。管は 6 つの系統に分かれており、系統 1 つあたりの長さは約 38 メートルとした。

室中央部にはシーリングファンを設置し、回転方向は 自由に設定できる。シーリングファンを設けることで、天 井下地より上部に伝わる熱を撹拌し居住域へ伝えること ができる計画となっている。

2.3 測定概要

測定点をFig. 1 (平面)、Fig. 3 (断面) に示す。Fig. 1 上のA、B、2 点について1~3の高さの異なる位置にそ れぞれ3 台の計測器を設置する。各測定点は「測定点A-1」「測定点B-2」のように定義する。各点では室温、相対 湿度について測定を行う。それぞれの測定高さについて、 point1 は FL+0m、point2 はFL+0.7m、point3 はFL+2.7m に設置する。point2 の高さは、着席時における居住域を 想定する。 室温、相対湿度の他、管内の往きと還りの水 温、ポンプ流量についても測定を行う。

実測を行う室には、Fig. 3 に示すような外気処理空調 機用の吹き出し口が設置されており流量の調整が行える。 今回の実測では、床面積と、人員密度 0.2 [人/m²]、単位 外気量 30 [m²/h・人] から換気量を計算し、350 [m²/h] とした。

System not menuada

Fig. 3 Measurement Room Overview

3. 夏期冷房時の実測

管内に冷水を流す夏期の検討を行うにあたり、まず基 礎検討を行う。基礎検討は管内水温を変動させ、その効果 を確認するものとする。

管内水温を14℃、16℃、18℃とし検討した。各ケース 検討時には、対流により冷やされた空気を効率的に居住 域へ伝えるため、天井部にはFig. 4のようなシーリング ファンを設け、上向きに 4020 m³/h で風が送られるよう 運転させた。

検討のうち最も水温の高い18℃のケースでは、室温の 下がり幅は最も小さくなった。一方、最も水温が低い14℃ のケースでは室温の下がり幅は大きくなったが、外気処 理空調機で除湿しきれなかった空気中の水分が結露し、 Fig. 5のような水滴が管表面に発生した。また、基礎検 討時の室内温度、相対湿度より露点温度を確認したとこ ろ約15℃となった。これらの基礎検討結果より、管内温 度は結露がなく、室温に与える効果の大きい16℃とし、 日中の実測を行った。管内の往き還りの温度差及び管内 流量をFig. 6に示す。システムを作動させた9時から17 時30分の実測結果における、往き還りの温度差と流量よ り、管の冷却能力を計算すると、1.3kWとなる。この熱量 は、伝導、対流、放射を含めた値であり、天井面方向、居 住域方向など全方位に放出されているため、居住域へ伝 わる熱量はこの値より少ないものと考えられる。

室内測定結果及び外気温をFig.7に示す。

システムは9時から17時30分の間稼働させた。稼働 を開始した9時からA-1~A-3の室温は下がり始め、天井 面付近に設置したA-3とB-3の温度差は平均して1.0℃ となった。

また、測定点 A-1~A-3 の 3 点は、B-1~B-3 と比較し温 度ムラの少ない結果となった。

4. 冬期暖房時の実測

続いて冬期の実測を行う。夏期の実測と同様に、あらか じめ基礎検討を行った。測定位置、シーリングファンの向 きなどは、夏期実測時と同様の設定とした。管内水温を 30℃、35℃、40℃とし実測を行った。検討の結果、往きと 還りの温度差はついたため放熱は行われていたものの、 外調機の吹き出し温度が高く、本システムによる、室内温 度への影響はほとんど見られない結果となった。

基礎検討の結果より、管内温度を、今回の実測で行える 最高温度である45℃に設定し、実測を行った。Fig.8に 管内の往き還り温度差及び管内流量を示す。システムを 作動させた9時から17時30分の実測結果における、管 の暖房能力は2.6kWなる。

室内測定結果及び外気温をFig. 9 に示す。本システム により温められた空気は天井部に溜まり、A-3 点の温度は 上昇したものの、居住域への効果はほとんど見られなか った。シーリングファンを回していたが、居住域より上部 で空気が循環するにとどまっていたと考えられる。風量 を上げすぎると不快な気流感や騒音が発生するためシー リングファンの風量を変更して改善させることは難しい。 また、室温は全測定点において、同一の周期で上下動す る結果となった。これは、夏期には見られなかった結果で ある。Fig. 10 に吹出し口の温度測定結果を示す。この結 果より、温度差は外調機の吹き出し温度の上下動が原因 と考えられる。自動制御による温度コントロールが行わ

Fig. 8 Pump Flow Rate and Water Temp. (Winter)

Fig. 9 Winter measurement results and temperature

れた結果室温に上下動が見られたと考えられる。

そこで、追加実測としてファンを下向きに設置。外調機の影響で室温が波打つ結果となったため外調機の運転も 停止し、実測を行った。また、管内水温も 30 度とした。

実測結果をFig. 11, Fig. 12 に示す。管内水温、流量 の実測結果より、管の暖房能力は0.9kWとなる。 A-1~ A-3 点の測定結果より、本システムを設置した側の室温は、 使用していない側と比較し、高い傾向が見られた。その結 果、設置した側の各高さでの室温差は小さくなった。これ は、シーリングファンを下向きに吹かせ、室全体の空気が

Inflow Temp. — Outflow Temp. — Pump Flow Rate
Fig. 11 Pump Flow Rate and Water Temp.
(Winter Additional measurements)

撹拌されたためであると考えられる。また、管の暖房能力 が冷房時より小さくなった原因としては、躯体の蓄熱に よりシステム稼働前から室温が外気よりも高くなってお り、暖房負荷が小さくなったためであると考えられる。

5. まとめ

金属強化ポリエチレン管を用いた簡易冷暖房システム を設置し、夏期、冬期それぞれの実測を通して性能の検証 を行い、以下の知見を得た。

- 今回の条件の場合、夏季で0.024kW/m²(0.0048kW/m)、 冬期で0.017kW/m²(0.0033kW/m)の能力となった。
- 2) 本システムを用いることで夏期・冬期ともに温度ム ラを抑制できるなど、一定の効果が見られた。
- 3) 夏期は冷やされた空気が下へ下がるため居住域の温度変化が大きく出たが、冬期は温められた空気が上へ上がるため、居住域での効果は薄い結果となった。
- 4) 現状の測定環境では室全体の温度分布が分からず、 また、グローブ温度や壁体表面温度が測定できない ため、システムの効果確認が難しい部分もあった。
 今後の課題として、「梅雨時期など高湿な日には結露が
 予想されるため、温湿度センサーを設け自動制御する」
 「スケルトン天井上部に伝わる無駄な熱を抑制する」などの検討が必要であると考える。

謝 辞

本実測の遂行にあたり、大西 泰輔 氏(積水化学工業 株式会社)をはじめ、多数の方にご協力頂きました。 ここに感謝の意を表します。

Fig. 12 Winter measurement results and temperature (Winter_Additional measurements)

一般病棟におけるパンデミック時の感染リスクを低減する換気システムの開発 Development of Ventilation System to Reduce the Risk of Infection during Pandemic in General Ward

日浅 英成(竹中工務店) 上田 真也(竹中工務店)
萩平 隆司(竹中工務店) 天野 健太郎(竹中工務店)
土屋 直也(竹中工務店) 谷 英明(竹中工務店)
野村 佳緒里(竹中工務店)
Hidenari HIASA*1 Shinya UEDA*1 Takashi HAGIHIRA*1 Kentaro AMANO*1
Naoya TSUCHIYA*1 Hideaki TANI*1 Kaori NOMURA*1
*1 Takenaka Corporation

During the COVID-19 infection spread, it is necessary to accept infected patients not only in infectious disease wards but also in general wards. As a measure to reduce the risk of infection in general wards during a pandemic, we developed a "switching ventilation system" to create negative pressure in the hospital rooms by a simple operation of adjusting a volume damper installed in the air supply duct. And we installed it in a new hospital. In this report, we confirmed the negative pressure and sufficient ventilation performance of the hospital rooms by CFD analysis and measurement survey.

はじめに

新型コロナウイルス感染症(COVID-19)の流行は長期 化し、多くの医療施設で感染患者の受け入れが行われ、 感染リスク低減対策として様々な施設計画や運用改善が なされてきた。感染拡大期は、指定感染症病床だけでな く一般病室での受け入れも必要となった。

病院設備設計ガイドライン(空調設備編)HEAS-02-2022 では、COVID-19のエアロゾル(マイクロ飛沫)を介した 伝搬様式をエアロゾル感染と呼び、その対策としては換 気回数2回/h以上の換気が有効とされている。また、陽 圧を避け、陰圧とすることが望ましいとされている。

COVID-19 発生時に実施設計中であった第二種感染症 病棟や結核病棟を有する感染症に特化した新築病院にお いて、パンデミック時に感染患者を受け入れる一般病棟 の感染リスク低減対策の一つとして、給気ダクトに設け たダンパーの開度調整というシンプルな操作により病室 を陰圧化する「切替え換気システム」を開発・導入した。

本報では、システムの概要、CFD 解析と実測による気 流性状や換気性能の検証結果を報告する。

1.計画概要

1.1 建築計画

建物概要を図1に示す。大阪はびきの医療センターは、 呼吸器・アレルギー性疾患、肺がん、感染症の中核的役 割を担う基幹病院である。2019年12月より実施設計に 着手、2021年2月に工事着工、2022年12月に竣工した。

1.2 病室計画

一般病棟4床室の病室プランを図2、空調換気設備概要を図3に示す。清浄度の高い外気処理給気口を医療従事者の動線となる通路部分に設け、排気口は洗面上に配置している。換気回数2回/h、換気量200m³/hである。 また、室中央の4方向天井カセット型エアコンを室に対して45度回転させて設置することで、各ベッドに対して空調空気が行き渡りやすくなるように配慮している。

図1 建物概要

図2 一般病棟4床室の病室プラン

1.3 病室陰圧切替え換気システム

従来、パンデミック等の緊急時に一般病棟の病室を陰 圧化する方法として、陰圧用の排気ファン・ダクトを設 けることが多い。しかし、平常時は使用しない設備とな るため、コストやスペースが余分にかかり、外調機の風 量アップにより設備容量やエネルギー消費量が増大する といった点が課題であった。そこで、できるだけ平常時 の設備を活用し、換気量を増やさずに簡易に病室を陰圧 化するシステムを開発した。

病室陰圧切替え換気システムを図4に示す。外調機からの給気ダクトに分岐ダクトと風量調整ダンパーを設け、 パンデミック時に給気先を病室から廊下に切り替えるこ とで病室を陰圧化する。これにより、パンデミック時も 平常時の設備をそのまま活用できるため、専用のファ ン・ダクトや外調機の風量アップが不要である。

平常時の病室は給排気を同風量とし、1 種換気、等圧 としている(図4(a))。パンデミック時には、給気ダク ト分岐部のダンパーについて、病室側を閉鎖し、廊下側 を開放することで3種換気、陰圧に変更できる(図4(b))。 また、ダンパーは手動で開度調整が可能であり、ダンパ ー開度を50%にすることで、平常時の50%のSOAを供給し つつ病室を陰圧とすることもできる(図4(c))。

大阪はびきの医療センターでは、第二種感染症病棟 6 床に隣接した一般病棟に今回開発した病室陰圧切替え換 気システムを導入し、パンデミック時に感染患者受け入 れ病棟を段階的に拡張可能な計画とした。

また、既存病院で従来方式の陰圧用ファン・ダクトを 導入するには病棟全体の改修が必要であったが、今回開 発したシステムは廊下天井内の給気ダクト部分に改修範 囲を限定しており、病室に入らない工事で導入すること ができる。

- 2.CFD 解析概要と結果
 - 2.1 CFD 解析概要

病室の確実な陰圧化と室内の換気性能が十分確保されているかを検証するため、4 床室の CFD 解析を行った。

解析モデルを図5、解析概要を表1、解析ケースを表2 に示す。少ないメッシュ数で形状近似精度が高い非構造 格子を用いて、定常解析を行った。

ケース A-1~3 は、エアコンの吹出角度を冷房時の下向 き 30°としている。ケース B-1~3 は暖房時の下向き 55°としている。換気回数は全ケース2回/hである。ケ ース A-1、B-1は平常時の設定で1種換気、等圧である。 ケース A-2、B-2は、パンデミック時の設定で3種換気、 陰圧である。ケース A-3、B-3は、パンデミックの設定で 1種換気だが、天井給気口からの SOA 量を平常時の 50% にすることで、陰圧としている。実際の運用を想定し、 各ケースともカーテンを閉じた状態で解析を行った。

図3 一般病棟4床室の空調換気設備概要

B-1

2.2 CFD 解析結果

解析結果を図6に示す。気流は、質量や体積を持たな い仮想粒子の軌跡を流線で示している。ケース A-2,3、 B-2,3 で廊下の空気が扉隙間を通じて室内に流入してお り、パンデミック時の病室陰圧化を確認した。

空気齢は床上1,300mmの分布である。ケースAとBを 比較すると、エアコンの吹出角度がより下向きとなる暖 房時のケースBにおいて空気齢分布に偏りが見られた。 ケースA-2、B-2では3種換気で給気が扉隙間からのみと なるため、ケースA-1、B-1と比較して空気齢が長くなっ た。特にケースB-2では、エアコンからの下向きの吹出 気流が扉隙間からの給気と干渉し、室奥の空気齢がケー スA-2と比較して長くなった。ケースA-3、B-3では、天 井給気口から平常時の 50%の SOA を供給することで、ケ ースA-2、B-2と比較して空気齢が短くなり、病室を陰圧 化すると同時に、換気効率の改善を図ることができた。

表1 CFD 解析概要

ソフトウェア	STAR-CCM(Siemens社)
乱流モデル	低Re数型Realizable k- モデル
メッシュ数	215万(非構造格子)

表2 CFD 解析ケース

		中	換気	給気		排気量	エアコン	
ケース	ケース 運用モード	加王	回数	天井(SOA)	肁隙間	天井(EA)	海転モード	循環風量
		左圧	回/h	m³/h	m³/h	m³/h	連転モート	m³/h
左_ 7 A 1	卫学	÷۲	2	200	0	200	冷房	700
9 - XA-1	十吊	守圧	2	200	0	200	(下向き30°吹出)	720
F-740	パンゴミック	юг	2		200	200	冷房	700
クースA-2 ハノナミ	ハンチミック	医庄	2 0	200	200	(下向き30°吹出)	720	
4 −7∧2	パンデミック	ふり	2	100	100	200	冷房	720
9 - XA-3	~~~~~	医庄	2	100	100	200	(下向き30。吹出)	720
ケーフ Ρ 1	亚省	笙匠	2	200	0	200	暖房	720
9-20-1	Ťŧ	守圧 Z Z00 0 Z00		200	(下向き55°吹出)			
ケーフ ロ つ	パンゴミック	юг	2	0	200	200	暖房	700
9 - 70-2			200	(下向き55°吹出)	120			
ケーフ P 2	パンデミック 陰	陰圧	Ē 2	2 100	100	200	暖房	720
9 - 70-3							(下向き55°吹出)	

図6 CFD 解析結果

図8 空気齢・差圧の実測結果

測定精度 ±0.5Pa

3.実測概要と結果

3.1 実測概要

実測概要を表3に示す。2023年1月の暖房期において、 病室陰圧切替え換気システムを導入した一般病棟の4床 室、1床室を対象に実測調査を行った。本報では、4床室 (表2のケースB-1~3)の空気齢、病室と廊下との差圧 の実測結果について示す。実測では、カーテンを開けた 状態での陰圧切替えによる各ケースの換気効率の差異に ついて検証した。

CO₂を用いたトレーサガスステップダウン法¹⁾により 空気齢を測定した。CO₂ガスを3,000 ppm を目処に室内で 均一に充満させたのち、ガス発生を止めて空調換気を運 転、濃度測定を開始した。CO₂濃度計(T&D 社製, TR-76Ui) の測定点を図7に示す。測定高さは床上1,200 mm とした。 代表断面では床上100、600、1,200、1,800mm で測定した。 各点の無次元内外濃度差を区分求積法により求め、測定 時間以降の濃度減衰は回帰式を用いて定積分により求め、 空気齢を算出した²⁾。微差圧計は testo521-3 を用いた。

3.2 実測結果

空気齢・差圧の実測結果を図8に示す。差圧はケース B-2で-1.4Pa、ケースB-3で-1.2Paであり、病室が陰圧 になっていることを確認した。空気齢はCFD解析結果と 同様、ケースB-2はケースB-1と比較して長く、ケース B-3はケースB-2と比較して短くなっており、病室に一 部 SOA を給気することで、換気効率が改善していること を確認した。カーテンを閉じた場合についてケース B-1 で検証したところ、室平均空気齢は3分程度長くなった。

4.まとめ

パンデミック時に一般病棟への感染患者のスムーズな 受け入れを実現する病室陰圧切替システムを開発し、 COVID-19 感染拡大時に実施設計中であった病院に導入 した。CFD 解析と実測調査により、病室の確実な陰圧化 と換気性能が十分に確保できていることを確認した。今 後発生しうる新たな感染症に対しても感染リスク低減対 策として有効な技術であり、新築だけでなく既存建物へ の導入にも十分対応できることから、医療スタッフへの 安全安心な環境提供に寄与できると考えている。

謝辞

本調査の実施にあたり、大阪府立病院機構 大阪はびき の医療センターの関係者皆様に多大なるご協力を、また 計画と検証において貴重なご指導をいただきました。心 よりお礼申し上げます。

参 考 文 献

- 1) 空気調和・衛生工学会規格:「トレーサガスを用いた単室の 換気量測定法」, SHASE-S 116-201
- REHVA, 空気調和・衛生工学会:「換気効率ガイドブック 理論と応用」, 丸善, 2009.10

クール&ヒートピットの省エネルギー性能に関する評価 Evaluation of the energy-saving performance of the Cool & Heat Pit

非会員 〇陳 贇(竹中工務店) 正会員 北村 俊裕(竹中工務店)

Yun CHEN*1 Toshihiro KITAMURA*1

*1 Takenaka Corporation

The LEED GOLD-certified foreign-owned office building has implemented a variety of environmental technologies. This paper provides an overview of one of these energy-saving technologies, the Cold & Heat Pit, and energy conservation evaluation details. We analyzed the data of temperature and humidity measured by BMS for one year, Able to verify the energy-saving effect of the Cold & Heat Pit.

1. はじめに

対象建物は、滋賀県野洲市に位置する外資系企業の化 粧品工場における従業員用の厚生棟であり、工場の玄関 としての機能も持つ。そこで本件では、工場の玄関にふ さわしい意匠性、従業員への福利厚生、環境配慮をコン セプトとして計画した。様々な環境配慮技術を導入し、 LEED V4 にて NC(新築)の GOLD 認証を取得した。

本稿では、導入した環境配慮技術の一つである「クー ル&ヒートピット」(以降 CHP とする)の計画概要及び性能 検証結果について報告する。

所在地	滋賀県野洲市
設計・施工	株式会社竹中工務店
用途	工場(事務所)
工期	2020年4月~2021年6月
敷地面積	$131, 176 \mathrm{m}^2$
建築面積	$2,886 \mathrm{m}^2$
延床面積	$4,952m^2$
構造	S造
階数	地上2階

表-1 建物概要

写真-1 外観

2. 計画概要

2.1 建築概要

写真-1に本建物の外観、表-1に建物概要について示 す。外装には縦ルーバーを全面に配置している。設計段 階で日射シミュレーションを実施し、ルーバー面毎に異 なる日射遮蔽に最適な角度を検討の上実装した。日射を 有効に遮蔽すると共に、眺望確保にも配慮した。窓ガラ スには全面 Low-E ペアガラスを使用し、断熱性を確保し ている。

- 2.2 設備概要
- (1) 電気設備

受変電設備:敷地内既存変電所より6.6KV1回線受電 発電設備:防災用3φ220V35KVA

- (2)衛生設備
- 給水設備:敷地内既存受水槽より加圧給水方式
- 給湯設備:局所給湯方式

(電気瞬間湯沸器+貯湯式電気湯沸器)

- 排水設備:汚水雑排水合流方式
- (3)空調設備
- 空調設備:空冷ヒートポンプパッケージエアコン

換気設備:外気処理エアコン、全熱交換器、給排気フ アン

- 排煙設備:自然排煙
 - (4) 昇降機設備

乗用エレベーター: 750Kg、11人、車いす仕様

2.3 環境配慮技術概要

本建物は環境負荷低減のため、意匠・構造・設備が融合した様々な工夫を行い、LEED V4 にて NC (新築)の GOLD 認証を取得した。図-1 に LEED GOLD 認証取得のために採用した要素技術を示す。

3. クール&ヒートピット技術

3.1 クール&ヒートピット及び測定の概要

本建物は敷地に隣接する新幹線からの振動影響を低減 する対策として建物全域にピットを設けており、そのピ ットを外気取入経路とした。ピットの構造概要を表-2に 示す。外気は建物南西側の屋外に設けた給気口から取入 れ、ピットを経由しピット内に立ち下げた4本の縦ダク トを経由して全熱交換器などの換気機器を介して各室へ 供給される。また、屋外給気口からピットまでは、600 ϕ のW 管を6本埋設し風洞として利用した。また、本建 物周囲は地下水位が高いため、湧水浸入によるカビの発 生などが懸念されたため、ピット内には防水を施した。 取り入れ経路の概念図を図-2に、ピット内部の状況を写 真-2に、外気取入口を写真-3に示す。

今回のCHPの効果を検証するため、ピット内に4箇所、 屋外に1箇所温湿度センサーを設け、温度・湿度測定を 行った。測定点を図-2のピット平面図に示す。竣工直後 の2021年12月から2022年9月までの10か月の実測デ ータを分析した結果を以下に示す。

3.2 測定結果と考察

(1) 温度の緩和効果

冬期及び夏期の外気温度、ピット内平均温度(①~④ の平均)、ピット内測定点①と④の温度実測値を図-3、図 -4に示す。測定点①は外気取入口から最も近く、測定点 ④は外気取入口から最も遠い測定点となる。実測結果よ り冬期、夏期共に外気温度と比較してピット内温度が安 定していることが分かる。空調運転時間内で温度緩和効 果は冬期では、室内取入段階で外気温度より平均 9℃の 昇温効果が確認できた。夏期においては 4℃程度の冷却 効果が確認できた。これらより夏期より冬期の方がクー ル&ヒートピットの外気温度の緩和効果が大きいことが 確認できた。一方冬期・夏季共に、時間帯によってはピット内温度と外気温度が、空調負荷低減という視点に対して逆効果になる時間帯が見受けられた。

図-1 LEED GOLD 実現ための様々な取り組み

写真-2ピット内部

写真—3外気取入口

表-2 ピットの構造概要

ピット内平均有効高さ		1850 mm	
人通孔直径		600 mm	
	床	コンクリート 300 mm	
仕様	天井	コンクリート 150 mm	
	側壁	コンクリート 320 mm	

図-2 CHP 平面図

図-4 外気及び CHP 空気の温湿度の変化(夏期 2022/7~2022/9)

また図-3 より、外気取入口から最も遠い測定点④は、 測定点①と比較し、冬期は5℃程度高く、夏期は2℃程度 低くなっていることが確認できた。測定点④は①と比較 し約 60m導入経路が長い。経路が長いほど CHP 効果が大 きいことを併せて確認できた。

(2) 夏期における湿度検証

夏期の外気及びピット内の相対湿度及び絶対湿度をそれぞれ図-5、図-6に示す。夏期の外気平均相対湿度は大きく変動しているのに対して、ピット内平均相対湿度は安定しているが70~90%近くと高くなっていることが確認された。

(3) 外気温度とピット内温度との関係

外気温度とピット内温度との関係について、図-7 に示 す。外気温度を X 軸、ピット内日平均温度を Y 軸とした ところ、単回帰では次の式による関係が認められた。

y = 0.5467x + 10.103(℃).....(1) 相関係数は0.96と高く、外気温度とピット内温度に高い 相関が確認でき、類似条件でのCHPの効果予測に有効な データとなった。

(4) CHP の外気負荷削減効果

外気温度及びピット内温度の実測データに基づき、冬 期及び夏期の空調稼働時間内での外気全熱負荷、潜熱負

図-6 外気及びピット内の絶対湿度の変化

荷の削減効果を算出した。負荷計算条件は表-3 に示す。 冬期の CHP 有無による月積算外気顕熱負荷を図-8、夏期 の CHP 有無による月積算外気全熱負荷を図-9 に示す。冬 期は12 月における外気顕熱負荷削減率は50%、夏期は7 月における外気全熱負荷削減率は32%となった。

また夏期のCHPによる外気負荷削減効果における顕熱、 潜熱の割合を表-4に示す。7、8月は顕熱削減効果割合が 大きく、9月は潜熱削減効果割合が大きくなった。これ は9月に外気温度が降下したことにより、ピット内温度 が外気温より高い時間帯が長くなり、温度緩和効果が減 少したことが原因と想定する。

4. 建物全体エネルギー消費量分析

2021 年 12 月から 2022 年 11 月までの1 年間の建物全体のエネルギー消費量を集計し図-10 に示す。本建物は内装が半分程度未実装となっているため、エネルギー消費量は参考程度と捉える必要があるが、年間 723MJ/m2年となった。このうち、空調に関わるエネルギーは全体の53%となった。オフィスがなく、厚生施設主体の用途のため、空調エネルギーの占める割合が大きい結果とな

	冬期	夏期
室内温度(℃)	22	26
風量(m³/h)	22,	000
空調稼働時間	8:00~18:00	
空気密度(kg/m ³)	1.2	
空気比熱(J/kg K)	10	006

表-4 夏期における外気負荷削減効果の内訳

	顕熱	潜熱
2022年7月	60%	40%
2022年8月	69%	31%
2022年9月	36%	64%

った。照明に関するエネルギー消費量は全体の18%になり、自然採光や人感センサー制御などの省エネ技術の効果があったと推測する。

5. おわりに

今回 CHP における年間実測により以下の結果を得ることができた。

1) 冬期平均で約9℃、夏期平均で約4℃の外気温度緩和効果を確認することができた。

2)外気取入口に最も近い位置と、最も遠い位置の温 度差は、冬期では5℃程度、夏期では2℃程度となり、経 路が長いほど CHP 効果が大きいことを確認できた。

3)空調稼働時間帯(8時~18時)において冬期3か 月平均で外気顕熱負荷を約46%削減、夏期3か月平均で 外気全熱負荷を約27%削減することができた。

謝辞

本論の取りまとめにあたって、建築主をはじめ多くの方々に 多大なる御支援・御協力を賜りました。ここに記して謝意を表 します。

図-8 CHP による冬期外気顕熱削減効果(2021/12~2022/2)

図-9 CHP による夏期外気全熱削減効果(2022/7~2022/9)

社員寮における寝室内環境制御システムの睡眠への効果検証 Effectiveness of a Bedroom Environment Control System on sleep quality in an Employee Dormitory

○小川 裕子 (竹中工務店) 越 村 翔(竹中工務店) 尚也(竹中工務店) 君塚 堀 翔太(ダイキン工業) 隆史(大阪大学) 安本 千晶 (ダイキン工業) 加藤 Yuko OGAWA*1 Sho KOSHIMURA*1 Naoya KIMIZUKA*1 Shouta HORI*2 Chiaki YASUMOTO*2 Takafumi KATO*3 *1 Takenaka Corporation *2 Daikin Industries Ltd. *3 Osaka University

In this study, we verified the effectiveness of the "sleep environment control system" for creating a good sleeping space. In the experiment, we compared sleep in a specialized sleep room and in our own room. Actigraph, OSA-MA, and other

questionnaires were used as sleep indices. As a result, the OSA-MA score was significantly improved in the sleep-specialized room compared to the home room. Other sleep evaluation indices also tended to improve.

Τa

はじめに

睡眠は、日中の生産性向上や健康状態に与える影響が 大きいため、睡眠の質を向上させることに対する社会的 ニーズは高くなっている。良い睡眠を得るためには睡眠 環境を整えることが重要である。

そこで、某社員寮において、睡眠状態に合わせて各種 設備を制御し、最適な睡眠環境を提供する睡眠特化室: ウェルネスルーム(以下、WR)を導入した。その有効性 を検証するために、被験者10名を対象とした夏季実測を 行い、自室での睡眠と比較した。本報ではその結果を報 告する。

1. 概要

1.1 建物概要

Fig.1.1.1 に外観、Table.1.1.1 に建築概要を示す。本施設 は、新入社員約200名が1年間の共同生活を行う研修寮 である。寮内は共用リビング、大浴場、食堂に加え、集 団研修等に利用する大研修室を備えており、寮生同士の 活発な交流を促進するために、各寮室はコンパクトなつ くりとなっており、ロフト上の空間が寝床となっている。

1.2 ウェルネスルーム(WR)概要

ウェルネスルーム(WR)の概要を Fig.1.2.1 に示す。空間 の基本コンセプトは「天蓋膜(ベッドキャノピー^{注1)})に包 まれた最高の睡眠空間」である。天蓋膜により空調によ るドラフトや照明のグレアを緩和しつつ、膜に「包まれ ている」という心理的効果も同時に期待した。天蓋膜の 形状については、実大モックアップを製作し、開口率の 異なる3種類の膜と、膜の傾斜角として"足側に傾斜" "頭側に傾斜""水平"の3条件で場合分けをし、最適

Fig.1.1.1 Building photo

able.1.1.1	Building outline
------------	------------------

所在地	兵庫県神戸市
用途	寄宿舎(独身寮)、研修所
構造	RC 造、S 造、SRC 造、免震
規模	地上3階、建築面積:3,463.92 m ² 、
	延床面積:6,189.97 ㎡、寮室:275 室

Fig.1.2.1 Wellness room outline drawing

ルームエアコン	入眠〜起床までの深部体温の変化を考慮し、設定温度	
), 21-)-5	から±1℃の範囲で膜内温度を調整	
	太陽光に近似したスペクトルを持つ超高演色 (Ra99)	
光天井照明	の白色 LED 素子を敷き詰めた光天井を睡眠状況に応	
	じ照度(0.3lx~2000lx)、色温度(2700K~5000K)を変化	
電動ブラインド	起床予定時に開放し、外光を寝室に取り入れる	
換気扇	常時換気とするが、室内 CO2 濃度より強または弱運転	
サーキュレータ(暖房)	入室までの余剰時間に運転し、室温を安定化させる	
加湿器(暖房)	WR利用時に運転し、冬季の湿度を安定化させる	
海文員	リビングに面する入口扉を二重扉とし、通常の寮室よ	
巡百庫	り静音性を向上	
Table.2.1.1 Experiment case		

Table.1.3.1 Equipment in the wellness room

Case2	WR での睡眠(天蓋膜有り)
Case3	WR での睡眠(天蓋膜無し)
形状の検証を行・	った。検証概要を Fig.1.2.2 に、結5

自室での睡眠

形状の検証を行った。検証概要を Fig.1.2.2 に、結果を Fig.1.2.3 に示す。結果として、「開口率 26%の膜×頭側 に傾斜」のケースで最も評価の高い結果となった。特に 温冷感への影響が高い気流感を抑えることができた。こ のケースに対する更なる改善案として、吹出角度を変更 し、頭部の膜をダブルスキンにすることで、顔〜脚の温 度差を小さくし、気流速度を抑えることができた。この 条件に基づき WR へ設置した。加えて、文献¹に基づき、 Fig.1.2.4 の睡眠環境制御アルゴリズムを構築し、WR に 導入した。予め利用者が設定した就寝・起床スケジュー ルと、非接触センサによる入床・入眠・覚醒の検知によ り、Table.1.3.1 の設備を制御した。

2. 実測概要

Case1

2022年7月~9月中旬に、成人10人(男性6人、女性4人、平均年齢24.7±1.2歳)を対象とし実施した。

2.1 実測ケース

実測ケースを Table.2.1.1 に示す。Casel では自室での 睡眠、Case2 は天蓋膜有りの WR での睡眠、Case3 は天 蓋膜無しとした場合の WR での睡眠とした。この3ケー スの実測について WR での順応夜を含む4日間で実施し た。尚、自室の実測環境については、通常の生活通りに 自身の好みで照明や空調を操作してもらった。

2.2 測定項目

(1) 環境測定

枕元に設置した環境センサ(オムロン社製 2JCIE-BL) により室温、照度、騒音を測定した。

(2) 睡眠評価

客観指標としてアクチグラフ(AMI 社製 マイクロモー ションロガー時計型)により、睡眠効率、入眠潜時、中途 覚醒を測定した。また、実測日の就寝前と起床後にアン ケートを実施した。就寝前アンケートを用いて、温冷感 と快適感を評価した。また、当日の生活(疲労、ストレス、 食事など)や、寝具・着衣状況について確認した。起床後

					1	1		
	ケース① 膜種類:A 傾斜:足側傾斜	ケース② 膜種類:B 傾斜:足側傾斜	ケース③	ケース④ 膜種類:A 傾斜:頭側傾斜	ケース(5) 膜種類:B 傾斜:頭側傾斜	ケース(6) 膜種類:C 傾斜:頭側傾斜	ケース⑦ 膜種類:膜なし 傾斜:一	ケース(8) 膜種類:B 傾斜:水平
空気温度	0	\triangle	0	0	\triangle	\triangle	\triangle	\triangle
平均温度 (10~30分時)	顔:20.0°C 足:20.3°C	顔:22.5°C 足:21.6°C	顔:22.1°C 足:21.8°C	顔:20.7°C 足:20.5°C	順:21.6°C 足:20.3°C	順:20.9°C 足:19.7°C	顔:22.4°C 足:20.9°C	顔:22.4°C 足:21.6°C
顏一足 温度差	-0.3°C	0.9°C	0.2°C	0.2°C	1.3°C	1.2°C	1.5°C	0.8°C
放射温度	\triangle	\triangle	\triangle	\triangle	0	0	\triangle	0
額付近平均温度 (10~30分時)	放射:20.9°C 空気:20.9°C	放射:22.3°C 空気:22.7°C	放射:21.8°C 空気:22.2°C	放射:21.2°C 空気:21.3°C	放射:21.2°C 空気:22.1°C	放射:20.6°C 空気:21.4°C	放射:22.3°C 空気:22.6°C	放射:22.2°C 空気:22.9°C
空気温度との差	0.0°C	0.4°C	0.4°C	0.1°C	0.9°C	0.8°C	0.3°C	0.7°C
CO ₂ 濃度	\triangle	0	0	×	0	0	0	0
平均温度 (10~30分時)	膜内:947ppm 膜外:807ppm	膜内:852ppm 膜外:807ppm	膜内:894ppm 膜外:831ppm	膜内:1165ppm 膜外:902ppm	膜内:931ppm 膜外:872ppm	膜内:913ppm 膜外:855ppm	膜内:954ppm 膜外:918ppm	膜内:832ppm 膜外:803ppm
膜内外濃度差	140ppm	45ppm	63ppm	263ppm	59ppm	59ppm	35ppm	29ppm
気流速度	×	\triangle	×	0	0	\square	×	0
顏付近 平均 風速	0.28 m/s	0.15 m/s	0.26 m/s	0.10 m/s	0.12 m/s	0.17 m/s	0.24 m/s	0.13 m/s
颜付近 最大 風速	0.77 m/s	0.44 m/s	0.46 m/s	0.35 m/s	0.31 m/s	0.37 m/s	0.63 m/s	0.33 m/s

Fig.1.2.3 Results of mockup experiments

アンケートを用いて、就寝時・起床時の就寝環境につい ての主観評価を行った。OSA-MA²⁾を用いて睡眠の主観 評価を行った。また、実測最終日には、これらの評価内 容をWRと自室とで比較した。

3. 実測結果(Case1, 2の比較)

3.1 環境測定

室内温度は、入眠前後の体温の変化に合わせて、入眠 のタイミングで1.0℃上昇し、その後低下する温度制御と した。Fig.3.1.1 に示すように、室内環境測定の結果、こ の温度制御ができていたことを確認した。また、照度と 騒音の結果について Fig.3.1.2 に示す。照度については、 就寝前に明るく点灯させ、ある一定時間を過ぎると照度 が落とすという照明制御が正しく稼働したことを確認し た。騒音については、常に約 37dB を保った環境とした。

3.2 睡眠評価(アンケート)

(1) 就寝前評価

就寝前アンケートにて、当日の生活や着衣等が各ケースで大きく差がないことを事前に確認した。温冷感・快 適感申告の結果を Fig.3.2.1 に示す。温冷感については、 自室の方が「どちらでもない」と感じた人が多かった。 WR で不快側の回答が見られた理由として「身体の一部 が暑い」などがあった。これは、入床前に室温を上昇さ せて末梢の血流を促進させることを狙った今回の制御に よるものと考えられる。また快適感について WR の方が 「快適」側の回答が多くみられた。自室で不快とした理 由に「気流を感じる」という回答があった。

(2) 起床後評価

睡眠環境についての起床後評価の結果を Table.3.2.2 に 示す。起床時の光環境のみ WR の方が有意に明るいとい う結果だった。これは光天井照明と電動ブラインドによ る効果と考えられる。また、就寝中の気流感では WR の 方が気流を感じにくい傾向(P<0.1)であった。これは天蓋 膜によってルームエアコンからの気流を抑制できた効果 と考えられる。OSA-MA では(Fig.3.2.3)、「起床時眠気」、 「疲労回復」、「睡眠時間」の3つの因子において WR の 方が有意に高かった。また、各室での覚醒要因について 確認すると、自室では9人が「目覚まし時計」による覚 醒だったのに対し、WR では「自然と目が覚めた(2人)」 や「光(3人)」によって起床した人が半数を占めた (Fig.3.2.4)。これはサーカディアンリズムに基づいた空調 制御や照明制御の効果であると推察できる。

(3) 総合評価

実験最終日に自室とWRを総合的に比較したアンケートでは8割の被験者から「WRの方が良い」と回答があった。その要因として、「気流感がない」「照明」「ベッド」「空間の広さ」が特に多く挙げられた。一方で、「音(騒音)」がWRの悪かった項目として多く挙がった。音環境

については、自室とは異なり遮音性の優れた WR では室 外からの音を遮断したものの、かえって室内エアコンの 音が気になったという回答が多かった。以上の主観評価 より、WR の睡眠効果を確認できた。

3.3 睡眠評価(アクチグラフ)

データが欠損した2人を除外し、8人を解析対象とし

Fig.3.2.1 Questionnaire before sleep

		自室		WR		Wilcoxon
		平均	SD	平均	SD	
就寝中	温冷感	3.10	0.57	3.00	0.47	0.564
	快適感	3.30	1.64	3.90	1.10	0.245
	気流感	0.80	0.79	0.20	0.42	0.084
	光環境	1.20	1.14	1.90	0.88	0.141
	音環境	2.10	1.37	2.20	1.48	0.722
起床時	温冷感	2.90	0.57	2.90	0.32	1.000
	快適感	3.50	1.35	4.20	1.14	0.288
	光環境	1.60	0.97	2.80	0.92	*0.031

wilcoxon test:*p<0.05

Fig.3.2.3 OSA-MA score

た睡眠効率の結果をFig3.3.1に示す。自室では平均92.4%、 WR では平均 97.8%だった。20 代は平均 96.0%3)と言わ れており、自室においても睡眠効率が高かったため、改 善の余地は少ないが、WR では 20 代平均を下回る人がお らず、被験者は全員が高い睡眠効率であった。入眠潜時 及び中途覚醒についての結果を Fig.3.3.2 に示す。入眠潜 時は、自室では平均 13.0 分、WR では平均 6.1 分であっ た。「若年では20分以上」という臨床的な目安4を参考 に、自室で入眠潜時が20分以上の2人に着目すると、い ずれも15分以内に入眠した。また、中途覚醒は自室では 25.3 分、WR では 8.6 分であった。20 代平均値が 15 分³⁾ であることを参考に、自室で中途覚醒が 15 分以上の 3 人に着目すると、WR で大きく改善した。以上の客観的 評価からも、WR での睡眠効果を確認することができた。

4. 実測結果(Case2, 3の比較)

天蓋膜の有無による比較実測では、風速に大きく差が あった。天蓋膜が有る Case2 では、人体周りの平均風速 が 0.1m/s 程度で、不感気流とされている 0.2m/s 未満 ⁵⁾ であった。天蓋膜が無い Case3 では平均風速が 0.4m/s 程 度であり、天蓋膜により寝具上への気流を緩和できた。 また、膜無し条件で得られた7人を対象としたアクチグ ラフの結果を Table.4.1 に示す。入眠潜時、中途覚醒のい ずれも平均値は天蓋膜有りの方が良好であり、5人の睡 眠効率が向上した。以上の結果より、天蓋膜による気流 感の低減や、空間としての安心感等の効果を確認した。

5. まとめ

良質な睡眠空間を創出するための「睡眠環境制御シス テム」を導入した睡眠特化室(WR)にて、被験者 10 名に よる夏季実測を実施し、その有効性を検証した。

自室とWRの比較実測結果より、主観アンケート評価 (OSA-MA)からWRで睡眠が改善したことを確認できた。 アクチグラフによる評価では、元々の睡眠が良く改善の 余地が少ない被験者が多く難しい中で、一部の睡眠に課 題のある人に対しては、改善効果が期待できることが示 唆された。

また、WR による天蓋膜の有無による比較実測により、 睡眠効率、入眠潜時、中途覚醒のいずれにおいても天蓋 膜「有り」の条件にて、睡眠指標が良好な結果となり、 就寝時の気流感を抑制することの重要性を確認できた。

以上の結果から、睡眠環境を整えることで睡眠の質が 向上することが確認でき、「睡眠環境制御システム」を導 入した WR の有効性を示唆することができた。

【謝辞】

本研究は独立行政法人科学技術振興機構(JST)の研究成果展 開事業「センター・オブ・イノベーション(COI)プログラム:グ ラント番号 JPMJCE1310」の支援によって行われた。

【注釈】

注1) 特許出願済:特開 2022-83917

10 0 自室 WR (膜有り) 自室 WR (膜有り)

10

Fig.3.3.2 Sleep onset latency and wake time by actigraphy

Table.4.1	Sleep efficiency (comparison of Case2 and Case3)						
	睡眠效]率[%]	入眠潜日	入眠潜時(min)		中途覚醒(min)	
	膜有り	膜無し	膜有り	膜無し	膜有り	膜無し	
ID2	98.4	93.8	9	7	6	20	
ID5	98.8	95.4	11	1	5	16	
ID6	94.9	88.0	0	2	19	49	
ID7	95.8	93.3	1	9	17	25	
ID8	98.7	99.0	9	12	5	4	
ID9	99.5	99.3	4	31	2	3	
ID10	98.2	99.4	4	12	8	2	
平均	97.7	95.4	5.4	10.6	8.9	17.0	
SD	1.7	4.2	4.3	10.0	6.5	16.8	

【参考文献】

- 1) 安本, 堀, 加藤:「入床前からの室温制御が夜間睡眠に与える 影響」,第60回日本生気象学会大会,2021
- 2) 小栗, 白川ら:「OSA 睡眠調査票の開発-睡眠感評価のため の統計的尺度構成と標準化」,精神医学 27,pp791-799, 1985
- 3) 平沢, 渥美:「睡眠の加齢変化 第一報:各睡眠パラメータ の変化について」,日本老年医学会雑誌,1997
- 睡眠障害国際分類第3版, P4, 2018 4)
- 5) Morito, Tsuzuki, Mori, Nishimiya: Effects of two kinds of air conditioner airflow on human sleep and thermoregulation, Energy Build, 2017

スマートウェルネスオフィスへの取り組み(計画・設計) Design of the Smart Wellness Office

○齋 藤 悠 輔 (大林組)

井 守 紀 昭(大林組)

名 倉 宏 明 (大林組)

Yusuke SAITO^{*1} Noriaki IMORI^{*1} Hiroaki NAGURA^{*1}

*¹ Obayashi Co.

1. はじめに

農業機械や建設機械を中心にクボタの研究開発機能を 堺市に集約させた「グローバル技術研究所」のスマート ウェルネスオフィスへの取り組みについて紹介する。

建物概要

地上7階 塔屋1階 延べ面積 94,047 m² 用途:研究所 竣工 2022年7月

2. スマートウェルネスオフィスへの取り組み

本計画は、「ZEB」、「知的生産性向上」、及び「感染症 対策と省エネルギー」の3つの課題を軸に取り組んだ。

2.1 ZEB

主に管理および厚生の施設である共用棟はZEB、実機の組立を行う研究現場や研究に関わる事務室、設計室を含めた建物全体ではNearly ZEBの認証を取得した。

図1 主な導入技術

2.2 知的生産性向上

研究のコアとなる設計室は研究者同士の出会いを自然 に促すために、1つのフロアにすべての部門の研究者が 集うことができる「ワンプレート型ワークプレイス」を 構築した。設計室は吹抜空間を包み込むように中2階を 配置した80m×180mの2層吹き抜けの大空間となって おり、パーソナル床吹出やノズル吹出等5つの気流でワ ーカーの居住域を包み込むような空調システム「エア・ ラップフロー」を計画した。人のいる空間を効率よく空 調し、上昇気流を利用し空調効率を高めると共に一人ひ とりの好みで空調気流を選択できるようにすることで個 人の満足度を高め知的生産性の向上を図っている。

図2 大空間の空調システム「エア・ラップフロー」

2.3 感染症対策と省エネルギー

昨今のコロナ禍では対策として換気量を十分に確保す る必要があるが、一方で省エネルギーの観点からは CO2 濃度等により外気量を適正に減らすことも重要である。 そこで本件ではクボタ製の空気清浄機ピュアウォッシャ ーを組み込んだ「レタンエア式空気清浄外調機」を開発 *1 した。ピュアウォッシャーはエアワッシャーにより捕 捉した菌やウイルスを、次亜塩素酸を主成分とした微酸 性電解水にて不活化する効果がある。還気をピュアウォ ッシャーにて洗い再循環することで、感染症対策として の換気量の確保と適正外気量による省エネルギーの両立 を目指している。共用棟のエントランスや来客用会議室 等に開発機として設置した。

図3 感染症対策「レタンエア式空気清浄外調機」概念図

※1 ㈱大林組、㈱クボタ、クボタ空調㈱の共同開発。特許出願

某放送局の設備計画 Facility Planning of a certain Broadcasting Station

○佐 藤 慎 (竹中工務店)

花 田 博 (竹中工務店)

Shin SATO*1 Hiroshi HANADA*1

*1 TAKENAKA Corporation

はじめに

新築複合用途建物へのテレビ局移転計画に関し、テレビ局部分の設備計画の特徴・BELS 取得について述べる。 着工後も多数の変更要望に対応し、テレビ局機能を充足 するよう検討を重ねた。建築設備概要をTable.1に示す。

	TADIC.I EXDIMINE
延面積	約 8,000 m (テレビスタジオ用途部分)
空調方式	空冷 IP パッケージエアコン主体
換気方式	熱回収外調機等による第一種換気主体
受電方式	本予備(異変電所)高圧2回線
非常用発電機	1,000kVA(原動機出力 1,076kW)
燃料タンク	A 重油 20,000L
UPS	待機冗長 300kVA

1. 全体計画

1.1 建築計画の特徴

放送局フロアは低層に、放送送出アンテナ等の放送設 備は屋上部に計画された。他用途階には放送専用 EPS を 設け基幹通信線ルートを確保している。また、屋上には 放送アンテナ直近に放送機器用シェルターを設け、導波 管が短くなる計画とし、お天気カメラの主要な方向と画 角に対して、屋上造営物の映り込みや航空障害灯からの 光漏れに配慮した計画としている。

放送機器サーバー室は、将来の大規模な機器更新(以下、遷宮と呼ぶ)用の空間と隣接して配置し、将来壁位 置を設定し遷宮後の設備漏水配慮等まで行っている。

1.2 設備計画の特徴・BCP 対応

万一の際や受変電設備点検時にも放送局としての機能 を維持するため、次に挙げる対応等を行っている。

電力については、受電方式を異変電所による本予備2 回線受電とし、非常用発電機は放送継続機器およびスタ ジオ1室運用分を賄う容量としている。UPS は待機冗長 システムとし無停電で更新可能としている。UPS 容量は 一部のサーバー群が二重で稼働する遷宮期間中の機器容 量で設定している。電源ノイズ対策等を考慮して一般系 と放送系で変圧器をバンク分けし、特殊接地を5系統(放 送機器用、シールドケーブル用等)用意している。

空調については、放送機器の冷却を担う空調機器を複

数台での冗長化構成としている。電源送りはメイン機を 発電機回路、予備機を一般回路とし、受変電設備の点検 中も本線受電と予備線受電を切り替えて空調可能である。 万一の停電時のメイン機の故障に備え、予備機へ発電機 回路から送電が可能なように開閉器と端子台を設けた。

衛生については受水槽を2基設け、緊急遮断弁を設置 し、給水ポンプを発電機回路とし、ピットに緊急排水槽 を設けている。

2. 省エネ計画・BELS 認証

機能性が重視される放送局であるが、着工後放送機器 等の負荷の詳細が明らかになった段階で環境性能向上提 案を実施し、テレビスタジオ用途で BELS★5 つを目指し た。建物の一部分での申請となるため対象エリアに効果 的な要素技術を導入することがポイントとなる。

2.1 外皮計画

着工後の外皮性能の向上策として一般的なLow-e ガラ スから高日射遮蔽ガラスに変更している。壁断熱増も提 案したがコスト対 BPI 評価により不採用となった。着工 時 BPIm=0.87 から BPI=0.81 へ向上し申請中。

2.2 一次エネルギー計画

BELS★5を目指し消費エネルギーの見直しを行った。 具体的には、①スタジオの照明を削減・高効率化、②PAC 室外機は高効率型に変更、③外調 PAC から熱回収外調機 へ変更、④予備機の考え方や諸元を見直し空調容量を削 減(空調予備機は評価対象外となる)、等を行っている。 放送サーバー室等は、"その室の使われ方が様々であり現 時点では標準的な使用条件を定めることが困難である建 築物の部分"とみなされ空調評価対象外とされた。同 BEIm=0.88 から BEI=0.67 に向上し★5 にて申請中。

3. まとめ

某放送局の設備計画について紹介した。着工後に負荷 詳細が明らかになった時点から受変電設備計画を含めた 電源計画の整理と環境提案を継続して行った。昨今の省 エネ技術の発展や環境性能向上に対する社会の変化に注 視し、機能性と環境性能に優れた放送局を実現した。

Table 1 建筑到借棚更

ソース・レセプター関係を用いた既設空調の最適制御手法の推定

Estimation of Optimal Operation Control of Established Air Conditioner by Using Source-Receptor Relationship

○ルディ	愛(大阪大学)	松尾	智仁	(大阪大学)
嶋寺	光(大阪大学)	近藤	明	(大阪大学)

Mana LUEDI*1 Tomohito MATSUO*1 Hikari SHIMADERA*1 Akira KONDO*1

*1 Osaka University

Abstract: In this study, to optimize blowout temperatures of air conditioners for a comfortable thermal environment, this study used the modified source-receptor (SR) method, which assume a linear relationship between the blowout temperature and the indoor temperature field. For reducing errors in the methods caused by nonlinearity due to buoyancy, a correction approach based on linear interpolation was developed. To evaluate the effect of the correction, a set of numerical experiments was conducted using three kinds of SR methods, and second CFD simulations were performed by giving the optimized blowout temperatures. Compared the SR methods with the second CFD simulations, the results did not show the superiority of the SR method with correction at the prediction accuracy compared to the SR methods without the correction. To obtain more obvious results, conditions for computation should be modified.

はじめに

空調を制御することで快適な温熱環境を構築すること が求められている。目標温度分布を再現できるように 様々に空調吹き出し温度を変更して計算する方法は計 算量が膨大になる。一方,目標温度分布から逆推定す ることで計算量を減らすことができる。松尾ら[1]は実在 の講義室での測定実験をもとに計算流体力学(CFD) モデルを作成し、ソース・レセプター(SR)関係を用い て、室内温度分布を目標温度分布に近づけるような空 調吹き出し温度を決定する逆解析を行った。従来のSR 法は線形関係を仮定しているが、熱源と温度分布の関 係は線形ではない問題点がある。そこで本研究では、 SR 法において浮力による誤差を減らす手法を提案し、 その効果を評価することを目的とする。

1. 研究手法

1.1. 従来の SR 法

従来のSR法は,熱源発熱量(本研究においては空調 吹き出し温度)の変化量と,室内各点における温度変 化の間に線形関係を仮定する。SR 関係を式 (1) に示 す。

$$A\Delta Q = \Delta T \tag{1}$$

ここでAはSR関係を表す因果行列, ΔQ は空調吹き出

し温度の変化量を表すベクトル、 ΔT は観測点での室温 変化量を表すベクトルである。行列 A が既知となると、 温度上昇量 ΔT が与えられた際、式(1)を解くことで吹き 出し温度ベクトルである ΔQ が求められる。本研究にお いては最急降下法による解法により吹き出し温度ベクト ルQを求めた。

ここで,式(1)の残差を用いて評価関数 *I* を式(2)の ように定義する。

$$I = \| A\Delta Q - \Delta T \|^2$$
 (2)

式(3)に示す最急降下法により吹き出し温度 Qを求める。

$$\Delta Q_{k+1} = \Delta Q_k - \frac{\partial I}{\partial Q} \Big|_{\Delta Q = \Delta Q_k}$$
(3)

1.2. 浮力の影響を考慮した場合の SR 法

しかし,実際には吹き出し温度の変化により浮力の大きさが変わり流れ場に変化が生じるため,この線形関係は成り立たない。そこで本研究では,複数の吹き出し温度に応じて SR 行列を複数作成し,それらの SR 行列の線形補間(補外)により最適吹き出し温度の最適化を行うように手法を修正した。行列 A を補正する手法においては,最急降下法のステップごとに推定されたΔQ を用いて行列 A を補正しながら計算を行った。

2. SR 法の適用方法

2.1. SR 法の評価の流れ

本研究における SR 法の適用の流れは以下のとおり である。まず,室内温熱環境の基準となるケースと基準 ケースから空調吹き出し温度を変更したケースの計算 を複数行い,吹き出し温度変化に伴う観測点での室温 変化の応答を得る。本研究では、+2℃ケースと+4℃ケ ースのそれぞれについてSR行列を得た。次に、目標温 度分布を決定し、式(2)~(3)の適用により最適吹き出し 温度 Q を決定する。同時に、そのときの各観測点の温 度分布が得られる。SR 法による予測温度分布の検証の ため、推定された最適吹き出し温度 Q を入力値として CFD シミュレーションを行い、得られた温度分布とSR 法 による予測値の比較を行う。

2.2. CFD 計算条件

CFD シミュレーションには、OpenFOAM を用いた。 室温の制御を行う点として、66 の観測点を設定した。 計算領域と観測点の位置を Fig.1 に示す。

Fig.1 Observation Points and Computation Field 計算領域は大阪大学吹田キャンパスの講義室を模擬 している。計算条件は夏季を想定した。室内には4つの 空調機 (風量 18.5 m³/min) があり, 天井に平行な向き を0°として54°で下向きに吹き出す設定とした。全熱交 換器 (風量 10.8 m³/min) からは 31℃の外気が吹き出 されていることとした。Fig.1 の南側に全熱交換器の吹 き出し口, 北側に吸い込み口それぞれ 4 つずつある。

すべての空調機の吹き出し温度が 22℃のケースを基 準とし、基準ケースから吹き出し温度が 2℃高いケース と 4℃高いケースを計算した。基準ケースからの変化量 から 2℃変化時の SR 行列 α と4℃変化時の SR 行列 β を作成した。Fig.2 から基準ケースの平均室温は 24.97℃になり、冷風は観測点まで到達した。

3. SR 法を用いた吹き出し温度推定

目標温度分布 (Fig.3) を北側 44 点は 26℃, 南側 22 点は 28℃の分布とした。

Fig.3 Target Temperature Field

SR 行列の修正の効果を評価するため、以下の SR 法 $\alpha \sim$ SR 法 $\gamma \sigma$ 3 通りの逆推定を行い、予測精度を比 較する。 A-13

SR 法 *a* : **SR** 行列 *a* のみを用いる

SR 法 β : SR 行列 β のみを用いる

SR 法 γ : 吹き出し温度に応じて **SR** 行列 α と **SR** 行列 β を線形補間して用いる

目標温度分布から SR 法を用いて最適吹き出し温度の逆推定を行った。逆推定によって得られた吹き出し温度を Fig.4 に示す。

Fig.4 Optimal blowout temperature from SR method

SR 法 β と γ から求めた最適吹き出し温度の高さは 01 > 02 > 04 > 03, SR 法 α から求めた吹き出し温度は 01 > 04 > 02 > 03 となっており, SR 法 β と γ は似た傾向があるが, SR 法 α は傾向が異なることが見て取れる。

4. 結果と考察

SR 法の逆推定によって求められた最適空調吹き出し 温度を空調機の境界条件として与え,再度 CFD 計算を 実行した (Fig.5)。

Fig.5 Temperature of Recalculation Cases (Z = 1.25 m)

基準ケースと比べると(Fig.6), SR 法による温度分布の ほうが目標温度分布に近いが,空間の室温分布に差を つけるという点だけを考慮すると基準ケースのほうが優 れる結果となった。

Fig.6 Target Temperature and Base Case

最適吹き出し温度から SR 法を用いて求めた室温に ついて (Fig.7),快適ゾーンではばらつきが大きいもの の 26℃を含めて温度が分布した。一方,弱冷ゾーン (28℃を目標とする)ではばらつきが小さいものの,目標 より下回った温度となった。

Fig.7 Target Temperature and Temperature from SR method CFD 再計算ケースから, 観測点室温を抽出し, Fig.8 にプロットした。 再計算ケースのほとんどの観測点での 室温は快適ゾーンの目標と弱冷ゾーンの目標の間に分 布しており, 目標温度は分布に含まれていなかった。 ま た, SR 法と再計算のどちらにおいても快適ゾーンの観 測点での室温は弱冷ゾーンの観測点での室温よりばら ついた。

-Recalculation Case α -Recalculation Case β

-Recalculation Case γ - Target Temperature

Fig.8 Target Temperature and Recalculation Cases

再計算によって得られた室温 T と式 (1) に最適吹き 出し温度を与え SR 法によって得られた室温 T'の差か ら式 (4) を用いて二乗平均平方根誤差 (RMSE) を求 めた。

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n-1} (T_i - T'_i)^2}$$
(4)

RMSE の値が小さいほどその SR 法は再計算ケース に近いと言える。Fig.9 に再計算ケースと SR 法の差か ら求めた RMSE を示す。

Fig.9 RMSE between Temperature of Recalculation Case and

that of SR method

CFD 再計算による温度分布は SR 法によって得られ た温度分布に比べ,より詳細な条件を用いた。したがっ て,右のグラフの RMSE が小さいほど,その SR 法はよ り実際に即した予測をしており,予測精度が高いと評価 する。SR 法と CFD 再計算ケース間の RMSE はケース β で最も小さくなった。

式 (4) の T に各ケースの観測点室温を, T'に目標温 度分布を代入し, RMSE を求めた。Fig.10 は RMSE が 小さいほど, ケースと目標温度分布が近く, ケースが目 標温度分布を再現していることを表す。

Temperature

CFD 再計算, SR 法どちらにおいてもケース a が最も RMSE が小さかったが,基準ケースと比較すると他のケ ースと目標温度分布の差は十分に現れていないと考え られる。

5. まとめ

快適な温熱環境を構築するために,室内温度分布を 目標温度分布に近づけるような空調吹き出し温度を決 定する逆解析として,発熱量と温度分布の間の線形関 係を仮定する SR 法の適用を検討した。本研究では SR 法において吹き出し温度に応じて SR 行列を線形補間 して用いることで、浮力による誤差を減らす手法を提案 し、その効果を評価した。3 通りの SR 法を用いて逆推定 し、得られた最適空調吹き出し温度を空調機の境界条 件として与え,再度 CFD 計算を実行した。今回の研究 の条件では、吹き出し温度に応じて動的にSR行列を変 更した場合の SR 法の予測精度が最も高いという結果は 得られなかった。また,基準ケースと比較して各ケースと 目標温度分布の RMSE の差が明確に現れなかった。 目標温度分布の条件を変更したり、より細かく多くの SR 行列を作成したりするなど改善の余地があると考えられ る。

謝辞:本研究は JSPS 科研費 21K14303 の助成を受け たものです。

参考文献

[1] 松尾 智仁, 鹿山 和真, 嶋寺 光, 近藤 明, ソース・レセプター関係を用いた空調機群の最適制御手法の逆推定, 第32回環境工学総合シンポジウム(2022), pp. 2411-14-02, 高松, 2022 年7月7~8日

機械学習を用いたルームエアコンのエネルギーシミュレーション (その1)暖房時における検討 Energy Simulation of Room Air Conditioner by using Machine Learning — (Part 1) Examination about Heating —

〇北村 祥子(大阪電通信大学) 平田 智洋(大阪電気通信大学)
 添田 晴生(大阪電通信大学)
 Sachiko KITAMURA *1 Tomohiro HIRATA *1 Haruo SOEDA*1
 *1 Osaka Electro-Communication University

In this study, we predicted compressor frequency, heat capacity, overall power consumption, and COP of room air conditioner by using Random Forest of machine learning using actual measurement data during heating. Here, the prediction results for one day were shown, and it can be said that they were roughly reproduced.

はじめに

ルームエアコンの性能評価には、JISC9612 に規定され ている APF(通年エネルギー消費効率)が用いられている。 しかしながら、APF は中間能力と定格能力の能力と消費 電力の定常値から、COP(エネルギー消費効率)を線形的に 補間して算出されている。つまり、エアコンの制御を再現 している訳ではなく、あくまで簡易的な推定を行ってい る。特に低負荷運転時において、エアコンは、圧縮機が ON、OFF を繰り返す断続運転が発生するが、APF の算出 において、これらの考慮はなされているものの、非常に簡 易的な扱いとなっている。以上の理由から、JIS で規定さ れている APF がどこまで実態に即しているのかは不明で あり、明らかにされていない。

そこで、本研究では、APF がどこまで実態に即してい るのかを明らかにするために、ルームエアコンの制御ロ ジックを考慮したシミュレーションを行ってきた^{[1]~[3]}が、 制御ロジックを完全に再現することが難しいことが課題 であった。そのために最近では、ルームエアコンの実測デ ータから熱量、消費電力、運転制御を機械学習により学習 して予測することを試みている。

本研究の目的は、ルームエアコンの熱量、消費電力、運転制御を機械学習により再現させ、それを熱負荷計算コード SCIENCE-Macro^[4]に組み込み、精度良く消費電力、 熱量、COP を予測できるようなシミュレーターを開発して、APFの検証を行うことである。

本報告では、暖房時の実測を行い、実測データを機械学 習により学習させて、ある一日を予測した結果について 報告する。

1. 実験概要

本研究で使用するルームエアコンの仕様を Table1 に示

し、Fig.1 に室内機の測定風景を示す。Fig.2 に実験室(床 面積 16.8m²)の概要を示す。また, Table2 に測定に用いた センサーを示す。

Table 1 Room air conditioner specifications

(For 10 tatami mats, made in 2012)			
冷房定格能力	$2.8 \mathrm{kW} (0.9 \sim 3.2 \mathrm{kW})$		
冷房定格消費電力	$0.710{\rm kW}~(0.200~\sim~0.900{\rm kW})$		
冷房COP	3.94		
暖房定格能力	$3.6{ m kW}~(0.9~\sim~4.8{ m kW})$		
暖房定格消費電力	$0.845 {\rm kW} ~(0.170 \sim 1.400 {\rm kW})$		
暖房 COP	4.26		
APF	5.8		

Fig.1 experiment of room air conditioner

室内機吸い込み口と吹き出し口には、それぞれ3つの 熱電対を設置し、さらに温湿度プローブを一つずつ設置 している。測定される平均温度,相対湿度から吸い込み口 と吹き出し口の比エンタルピーを算出して風量から熱量 を求める。ただし、暖房時について、このエアコンは加湿 機能がなく湿度変化がないため、温度と風量から熱量を 算出している。また風量は事前に風量5段階の風量1、3、 5の条件に対して、それぞれ吸い込み口の132個の格子 枠に対して、それぞれ1本の熱線風速計を5秒間測定し、 それを移動させながら平均風速を求め、吸い込み口面積 を掛けて風量を算出し、さらにその時の室内機ファンの 回転数を測定し、回転数と風量の線形式を算出している。 普段の実験では、ファン回転数を測定し、この線形式を用 いて、風量を算出している。

Fig.2 room for experiment

Table 2	Measurement items and sensors	
---------	-------------------------------	--

	測定項目	センサー		
	吹き出し温度	T型熱電対(3点)		
		温湿度プローブ(1 点)		
	ゆち山口 泪泪声	白金測温抵抗体(±0.3℃)		
	吹さ出し温湿度	静電容量式 (0~100%		
		±3%RH at25°C)		
学中楼	吸い込み温度	T型熱電対(3点)		
主的機	吸い込み温湿度	温湿度プローブ(1 点)		
		回転計		
	ファン回転数	[表示値×(±0.02%)±1 カウン		
		ኑ]		
	令休鸿费重力	電力トランスデューサー		
	主件伯貨电力	(±2%FS)		
	冷媒蒸発温度	T型熱電対(1 点)		
	(冷媒管表面)			
室外機	冷媒凝縮温度	ア刑執電社 (1 占)		
	(冷媒管表面)	1 主然电对 (1 杰)		
	圧縮機周波数	電力計(±0.5%rdg. ±1dgt.)		
		温湿度センサー		
室内	温湿度	温度(平均±0.3℃)		
		湿度(±5%RH at 25°C,50%RH)		
室外	温湿度	温湿度センサー		

また室内の温湿度センサーは実験室の中心に高さ1.2m の位置に設置している。ルームエアコン全体の消費電力 の測定には電力トランスデューサーを使用した。

また室内機と室外機の冷媒管の温度については四宮ら の研究^[5]を参考にして、室内機の冷媒管に熱電対を貼るこ とが難しかったため、Fig.3 に示すように室外機出入口の 太い冷媒管(ガス)の表面に熱電対を貼り付けて保温材で 巻いた。この温度は暖房時では室内機(凝縮器)入口温度に 相当し、冷房時では室内機(蒸発器)出口温度に相当する。 また、もう一つは Fig.4 に示すように室外機の熱交換器の 上から3段目内側のU字湾曲部に熱電対を貼り付けた。 四宮らは冷房時において、この位置で冷媒が凝縮してい ることを確認しているため、本研究でも同じようにした。

また、室内外の温湿度センサーの測定間隔は1分であ るが、それ以外のセンサーの測定間隔は5秒としている。

Fig.3 Refrigerant pipe measurement point

Fig.4 Refrigerant pipe measurement point and compressor frequency measurement

2. 機械学習(Random Forest)

機械学習の代表的な手法である SVM(サポートベクト ルマシン)と Random Forest を用いて、エアコンの圧縮 機周波数の予測を行ってみたところ、SVM の予測精度 が良くなく、Random Forest を用いるとかなり精度が良 かったため、ここでは Random Forest を用いることに した。

Fig.5 The Concept of Random Forest

Fig.5 に示すように Random Forest^[6]は、学習データから復元抽出を行い、同じサイズのデータ集合を複数作成し、各データ集合に対して、識別器として決定木を作成する。この決定木の数が多いほど、予測精度は向上する。さらに、ノードでの分岐特徴を選ぶ際に、全特徴からあらかじめ決められた数だけ特徴をランダムに選び出し、その中から最も分類能力の高い特徴を選び、この操作を再帰的に行う。本研究では、Python の scikit-learn のライブラリを用いている。

3. ルームエアコンの機械学習

ルームエアコンの実測データからルームエアコンの熱 量と消費電力を予測して、最終的に COP を予測すること を考える。冷凍機の理論を考えると、圧縮機の動力(電力) と熱量は圧縮機周波数、冷媒の蒸発温度、凝縮温度に依存 していることから、これらを説明変数として選んだ。ま た、一般にルームエアコンの圧縮機周波数は吸い込み温 度と設定温度の温度差を偏差として制御しているはずで あるため、ここでも説明変数として選んだ。また、もう一 変数としては、一般に PID 制御を考えたときに偏差の微 分を用いるため、ここでも微分、つまり傾きに近い考えか ら、吸い込み温度の時間変化を用いることにした。

Table 3 Objective Variable of Machine Learning

	目的変数
f	圧縮機周波数
cap	熱量
pow	全体消費電力

Table 4 Explanatory Variable of Machine Learning

	説明変数	
t _r -t _{set}	吸い込み温度-設定温度	
tr-tr,old	吸い込み温度-1分前の吸い込み温度	
t _{evp}	冷媒の蒸発温度	
t _{cnd}	冷媒の凝縮温度	

Fig.6 Machine Learning Flow of room air conditioner

ここでは Table3、Table4 にそれぞれ本研究の機械学習 の目的変数と説明変数を示し、Fig.6 に全体の流れを示す。 まず、目的変数を圧縮機周波数 f として、説明変数に t_rt_{set}(吸い込み温度-設定温度)と t_r-t_{rold}(吸い込み温度-1 分前 の吸い込み温度)を用いて予測を行う。続いて、目的変数 をルームエアコンの熱量 cap と全体消費電力 pow として, それぞれに対して、説明変数に先ほど予測された圧縮機 周波数 f、冷媒の蒸発温度 t_{exp}、冷媒の凝縮温度 t_{end}を用い て予測を行う。最終的に、COP(=cap/pow)を計算して、COP を算出する。

4. ルームエアコンの機械学習の予測結果

ルームエアコンの暖房時の運転条件として、設定温度 20℃、風量 5(5 段階)として、夜の 0 時~7 時まで運転さ せて、実測データを取得した。ここでは 38 日分のデータ を用いて機械学習を行い、この学習データに含まれない ある 1 日あるいは数日間のデータに対して予測を行い、 精度検証を行った。

Fig.7 に 38 日分の圧縮機周波数の実測値と学習結果を 示す。決定係数 R² は 0.716 となり、それほど悪くはない と考えられる。

Fig.7 Comparison of actual compressor frequency and learning results by Random Forest (for 38days)

次に Fig.8~Fig.11 に 2022/1/20 における圧縮機周波数 f、 熱量 cap、全体消費電力 pow、COP の実測と予測の比較結 果を示す。

結果から圧縮機周波数、熱量、全体消費電力、COP と もにおおよそ実測値と予測値は一致していることがわか る。予測値の波形の変動が大きいが、これは 5 秒間の計 測値を1分平均にして学習しているものの、それでも変 動していることが影響したと考えられる。

Fig.8 Comparison of actual compressor frequency and predicted results by Random Forest (2022/1/20)

Fig.9 Comparison of actual heat capacity and predicted results by Random Forest (2022/1/20)

Fig.10 Comparison of actual overall power consumption and predicted results by Random Forest (2022/1/20)

Table 5 RMSE(Root Mean Squared Error)

周波数 [Hz]	熱量 [W]	消費電力 [W]	COP [-]
21.2	442	132.7	0.294

Table 6 Relative RMSE by the average value

周波数 [%]	熱量 [%]	消費電力 [%]	COP [%]
23.4	24.3	26.6	7.9

Table5 はそれぞれの RMSE(2 乗平均平方根誤差)をまと めたものでり、Table6 は RMSE をそれぞれの変数の平均 値で割って相対化した値である。結果から、COP を除く と、20%程度の誤差が生じているが、おおむね妥当ではな いかと考えられる。

5. まとめ

本研究では暖房時におけるルームエアコンの実測デー タを用いて、機械学習のRandomForestにより学習させて、 圧縮機周波数、熱量、全体消費電力、COPを予測した。 ここではある一日の実測値と予測値の比較を示したが、 おおよそ再現できたと言える。

しかしながら、今後の課題としては、データ数を増やす と精度が上がるのか、また断続運転時の予測精度はどう か、また設定温度を変えた場合も同じ精度で予測できる のかなど調べていく必要がある。また冷房時の検討につ いては次報で報告する。

参考文献

- [1] 池西友樹, 添田晴生, 下田吉之, 高岡大造, 中田亮生: ルームエアコンの制御ロジックを連成した CFD による冷暖房計算に関する考察, 空気調和・衛生工学会大会学術講演論文集, pp.665-668,2012
- [2] 池西友樹, 添田晴生, 下田吉之, 高岡大造, 中田亮生: ルームエアコンの制御ロジックを連成したエネルギーシミュレーション(第1報)JIS 基準における期間エネルギー消費効率との比較, 空気調和・衛生工学会近畿支部学術研究発表会演論文集,pp.189-192,2013
- [3] 池西友樹, 添田晴生, 下田吉之, 高岡大造, 中田亮生: ルームエアコンの制御ロジックを連成したエネルギーシミュレーション(第2報)JIS 基準における通年エネルギー消費効率との比較, 空気調和・衛生工学会近畿支部学術研究発表会演論文集,pp.177-180,2014
- [4] 添田晴生,鳴海大典,羽原宏美: CFD 簡略化による熱負荷計算の精度向上に関する検討 第1報-SCIENCE-Macroの概要とSMASHとの比較,空気調和・衛生工学会論文集, No.183, pp.67-75,2012-6
- [5]四宮徳章,西村伸也,伊與田浩志,倉田理:ヒートアイランドに関する空調機の実運転特性および排熱特性の調査研究第1報:ニューラルネットワークによるルームエアコンの実性能簡易測定手法の提案,日本冷凍空調学会論文集, Vol.26, No.1, pp.93-104, 2009
- [6] 荒木雅弘:フリーソフトではじめる機械学習入門(第2版) 森北出版、p.171、2018

機械学習を用いたルームエアコンのエネルギーシミュレーション (その2) 冷房時における検討 **Energy Simulation of Room Air Conditioner by using Machine Learning** — (Part2) Examination about Cooling

○平田 智洋 (大阪電通信大学) 北村 祥子 (大阪電気通信大学) 添田 晴生 (大阪電通信大学) Tomohiro HIRATA^{*1} Sachiko KITAMURA^{*1} Haruo SOEDA^{*1}

> *1 Osaka Electro-Communication University

In this study, we used Random_Forest, which is one of machine learning using actual measurement data during Cooling to predict Compressor frequency, Heat capacity, Overall power consumption and COP. In this report, we present the prediction results for one day, and it can be said that the results were roughly reproducible.

1. はじめに

ルームエアコンには機器自体に、エネルギー消費効率 (COP、APF)等の性能が値として記載されている。しか し、実際の運転時では、室内外温湿度は刻々と変化するこ と、日射量や温度上昇等の非定常な影響も受ける点から、 定格運転能力が常に発揮されるとは限らない。また APF は年間を通し、一定条件から運転させた時の冷暖房能力 と消費電力を使用した簡易な計算方法により算出されて いるため、あくまでも推定値に過ぎなく、エアコンの制御 を再現している訳ではない。故に、記載値が幾分実態に即 しているのかは不明である。そこで、過去の研究からルー ムエアコンの制御ロジックを考慮したシミュレーション [1]2]が行われていたが、完全再現は困難である課題があっ た。そのため現時点の検討では、ルームエアコンの実測デ ータを機械学習で学習し、予測することを試みている。

本報告では機械学習の一つである Random Forest を使 用したルームエアコン実測結果を機械学習により再現す ることを検証している。前報では、暖房時による検討が行 われ、機械学習を用いた検討結果について提示し、また学 習が首尾良くできたことを確認した。本報は冷房時の検 討を行い、前報同様に実測データを機械学習で学習させ、 ある一日の予測結果を提示し、冷房時も機械学習による 検討は有効であることを確認する。

2. 概要

2.1 検討フロー

検討をした機械学習のフローを説明する。検討の流れ は、学習データの作成、Random_Forest による学習状況、 1日分の予測結果出力の3つで構成している。第一に実 測調査から得た値を集約して、傾向毎に分類を行い、学習 データとして複数の検討材料を作成する。作成したもの

を基に、Random_Forestから学習結果を表示し、最終的に は予測する変数1日分のエアコン運転時間分(6~7時間) を出力する。但し COP は予測ではなく、機械学習から出 力された熱量 cap と電力 pow を用いて算出している。 次のTable.1 は予測する目的変数で、Table.2 は説明変数で あり、Fig.1 は前報同様の機械学習フローの詳細図を指し ている。

able.1	Objective	Variable	of Machine	Learning

Table.1 Objective Variable of Machine Learning					
	目的変数				
f	周波数				
cap	熱量				
pow	消費電力				
Table	2.2 ExplanatoryVariable of Machine Learning				
	説明変数				
t _r -t _{set}	吸い込み温度-設定温度				
tr-tr,old	吸い込み温度-1分前の吸い込み温度				
t _{evp}	冷媒蒸発温度				
t _{end}	冷媒凝縮温度				
 t_r-t_{set} t_r-t_{rold} 	 t_r-t_{set} t_r-t_{rold} : 吸い込み温度-設定温度 : 吸い込み温度-1分前の吸い込み温度 				
Rand	Random Forestで予測 f: 圧縮機周波数				
t t _{evp} t _{cnd} t _{cnd} :凝縮温度					
Random Forestで予測 cap pow					
$COP = \frac{cap(熱量)}{pow(全体消費電力)}$					

2.2 学習データ作成

学習データには先ほど記述していた通り、複数の検討 材料を作成し、その中で最も良い条件について模索する。 何故ならば、現段階で取り扱う変数を既に設定しており、 学習データの傾向から最も良い条件を見出すためである。 第一に機械学習が適切であることを確認するため、特化 型として予測する運転結果と学習に用いるデータが酷似 した状態で予測を行う。例えば予測するものが「定常」の 場合、学習に用いるデータは定常のみであることを指す。

当然だがエアコン運転制御には定常や断続、低負荷と 一律ではないため、仮に定常の予測が首尾良くできたと しても、断続や低負荷には対処できないことが起こり得 る。また学習データ次第では、類似した運転結果であろう とも結果に差異が生じることが推測され、真正を得るに は複数の日付で行う必要がある。更に学習データに用い たサンプル数も、予測に影響を及ぼすことは想像が付く。 少数では予測に信憑性が薄いこと、多数では検討に不適 合な情報が込まれる可能性があり、予測誤差の増加が懸 念されることから、巧みに調整を行う必要がある。

それらを踏まえた上で、次のTable.3が指すものは作成 した学習データの内訳とサンプル数である。 またサンプル数には予測をする日付を含めていない。

Table.3	Training data Condition - 1	
---------	-----------------------------	--

番号	学習データ内訳	サンプル数 (日数)
А	定常10割、断続なし	10140(25 日分)
В	定常なし、断続10割	19140(50日分)
С	全学習データ(定+断+低負荷)	53121 (135 日分)

3. 機械学習-検証

3.1 機械学習 - 適正確認

予測するものが定常運転、断続運転の各自に対し、 Table.3 に挙げた番号A、番号Bまたは番号Cを活用して 機械学習の適正を確認する。次のFig.2 は、定常運転時に おける一日の予測結果例であり、Fig.3 は断続運転時にお ける予測結果例を指す。図には順番に周波数f、熱量 cap、 電力 pow、COP の4 つを出力している。予測をした結果 例の日付とコンディションを以下に示す。

● 定常:2021年8月26日-設定温度26℃-風量5

● 断続: 2021 年7月21日-設定温度26℃-風量5

上記の風量とはルームエアコンのリモコンから設定でき る風量が1~5であることを指す。運転期間は10~17時、 或いは16時迄の6~7時間とし、評価方法には誤差を測 定する RMSE を使用した。定常運転時の評価を Table.4、 断続運転時の評価を Table.5 で結果を纏める。

Fig.2 Comparison of actual measurement and prediction results by Random_Forest (set temperature of 26°C, air volume of 5[2021/8/26])

Table.4 Steady operation - RMSE(Root Mean Squared Error)

運転名	条件	周波数[Hz]	熱量[W]	電力[W]	COP[-]
定常	А	3.69	286	31.4	1.05
運転	В	17.8	650	51.1	2.47
	С	5.39	510	30.1	2.55

定常運転の予測では、案の定、番号Aの定常データの みの学習が誤差の少ない結果となり、逆に番号Bの断続 データのみの学習では誤差の多い結果となった。番号 C では番号Aの要素は含まれているが、番号Bも兼ねてい るため、番号Bによる影響が生じた可能性がある。 A-15

空気調和・衛生工学会近畿支部 学術研究発表会論文集(2023.3.7)

Fig.3 Comparison of actual measurement and prediction results by Random_Forest (set temperature of 26°C, air volume of 5[2021/7/21])

Table.5	Intermittent operation	—	RMSE(Root Mean Sc	juared Erro
---------	------------------------	---	-------------------	-------------

運転名	条件	周波数[Hz]	熱量[W]	電力[W]	COP[-]
断続	А	12.4	617	55.0	3.79
運転	В	10.5	440	34.3	3.17
	С	10.2	468	36.8	3.42

断続運転に関しては、先程で述べたことに類似した結 果となり、断続運転に対して番号 B の断続データのみで は誤差が少ない結果となり、番号 A の定常のみでは誤差 の多い結果となった。番号 C では番号 B と比べて僅かに 誤差が高くなる場合がある。 だが現段階では1日分の予測結果のみであり、確証を 得るため、10日分の検討を行う。Table.6は結果を示した ものであり、括弧表記は10日分を平均化したものを指す。

Table.6RMSE(Root Mean Squared Error)—Prediction result ofSteady operation and Intermittent operation for 10 days using Training

data Condition - 1						
名	条	周波数	熱量	電力	COP	
称	件	[Hz]	[W]	[W]	[-]	
定	А	1.30~6.36	140~336	10.0~63.9	0.868~3.02	
常		(4.65)	(272)	(32.5)	(1.57)	
運	В	11.0~28.5	392~650	37.9~61.5	2.05~3.57	
転		(15.86)	(476)	(49.2)	(2.63)	
	С	5.32~7.14	258~510	17.8~36.1	1.27~3.27	
		(6.24)	(365)	(30.6)	(2.04)	
断	А	12.3~28.8	617~1006	54.9~112	3.79~7.03	
続		(19.5)	(814)	(81.1)	(5.46)	
運	В	5.87~12.5	162~542	15.2~35.0	1.79~4.96	
転		(10.2)	(357)	(28.1)	(3.18)	
	С	6.03~14.4	176~550	19.2~53.2	2.17~4.47	
		(11.3)	(370)	(32.1)	(3.27)	

全体を確認すると、何れの運転も同じ学習条件を使用 したところ、日付によって誤差が大きく変動する場合が ある。特筆すべき点を挙げると、定常運転時の予測は何れ も類似した予測傾向であり、傾向に沿っている場合は比 較的に誤差の小さい予測結果となる。稀に Fig.4 に挙げて いる電力値において、定格能力に大した変化がないのに も関わらず、普段よりも大きい、或いは、小さいことが発 生し、その日付を予測検討した場合は、番号 A ですら対 処できないことが判明した。定常時の電力予測で誤差範 囲が大きい理由は、この事が該当する可能性がある。

また断続運転の周波数予測おいて、番号 A の定常デー タのみの学習データを用いると、実際の予測は殆どの場 合が次に示す Fig.5 の通りであった。

何れも ON/OFF が切り替わる間歇部分には対処できず、 断続運転の予測は定常運転時と酷似した予測が為された。 電力と熱量において、変動があったものの、同様に間歇部 分には十分な対処ができていない。そのため厳密に予測 を検討する場合は定常データのみである番号 A は断続運 転の予測には不適合である。断続運転のみである番号 B も Fig.2 のグラフから定常運転の周波数予測が合わない。 故に番号 B も不適合である。以上から番号 A、番号 B の 特化型では、複数の運転に対して柔軟に対処できない。残 った番号 C は、特化型と比べて若干誤差は増加するもの の、複数の運転に対して対処できており、誤差を抑えられ ていることから番号 C が予測に適正を持つ可能性がある。

3.2 機械学習 - 学習データ調整

3.1 節より、番号Cが複数の運転に対して予測に適正を 持つ可能性があると述べたが、あくまでも一つ残らず全 てのデータを使用したため、一部の不適切なデータが、誤 差を増加させていることが推測される。故に本節では番 号Cの学習データから幾分か調整を行い、誤差の減少を 目指せる否かを確認する。次のTable.7 は新たに作成した 学習条件である。

Table 7Training data Condition - 2

	U	
番号	学習データ内訳	サンプル数 (日数)
D	定常5割、断続5割	19701 (50 日分)
Е	定常7割、断続3割	20241 (50 日分)
F	定常3割、断続7割	19941 (50 日分)

Table.8 RMSE(Root Mean Squared Error)-Prediction result of

Steady operation and Intermittent operation for 10 days									
名称	条件	周波数[Hz]	熱量[W]	電力[W]	COP[-]				
定常	D	6.68	318	35.5	1.95				
運転	Е	7.33	342	40.7	2.16				
	F	6.99	352	32.1	2.10				
断続	D	11.5	350	32.9	3.14				
運転	Е	12.3	382	38.8	3.50				
	F	10.9	340	28.0	2.94				

Table 9 Mean absolute error compared to number C

名称	条件	周波数[%]	熱量[%]	電力[%]	COP[%]
定常	С	8.94	19.2	11.5	20.3
	D	9.52	17.6	14.0	20.6
	Е	8.06	17.0	15.7	22.2
	F	11.8	19.7	13.3	22.8
断続	С	41.0	59.3	27.4	60.1
	D	40.9	56.8	27.5	58.1
	Е	40.7	55.2	28.2	56.6
	F	42.1	56.4	27.2	58.0

Table.8 は定常・断続の10日分の予測誤差を平均化した もの、Table.9 は予測値と実測値の差の絶対値を平均した 平均絶対誤差を指す。番号 C を基準として、その他の学 習条件と比較すると、結果には大きな差は生じなかった。 番号 C より優れる場合も存在したが、誤差抑えは雀の涙 程度であり、逆に誤差の増加は多くのケースで発覚した。

上記から機械学習による検討は、現時点において、番号 Cを用いたとしても差し支えない可能性がある。

4. まとめ

本報では冷房時において、複数の学習条件から、圧縮機 周波数、熱量、消費電力、COPの予測をした。定常運転 における平均絶対誤差は 10~20%台と概ね再現できた可 能性があるが、断続運転では、電力を除いて平均絶対誤差 は 40~50%台と再現性に劣ることが判明した。

機械学習の理論上、あるデータに特化すると、特化部分 には対処できるが、その他は多くの場合で対処ができな いため、番号 C のあらゆるデータを含んだ学習データを 作成し、その中で更なる誤差の縮小を目指す試みをした。 しかしながら、結果の大半は誤差の縮小を見込める可能 性が薄く、逆に増加するケースが目立ち、サンプル数の多 い全学習を用いても予測に差し支えない可能性がある。

今後は更なる誤差の縮小を目指す必要があり、Fig.4の 例外事例を取り除く等の学習データ見直しを検討する。

5. 参考文献

- [1] 池西友樹, 添田晴生, 下田吉之, 高岡大造, 中田亮生: ル ームエアコンの制御ロジックを連成したエネルギーシミュ レーション(第1報)JIS 基準における期間エネルギー消費効 率との比較, 空気調和・衛生工学会近畿支部学術研究発表 会演論文集,pp.189-192,2013
- [2] 池西友樹,添田晴生,下田吉之,高岡大造,中田亮生:ル ームエアコンの制御ロジックを連成したエネルギーシミュ レーション(第2報)JIS 基準における通年エネルギー消費効 率との比較,空気調和・衛生工学会近畿支部学術研究発表 会演論文集,pp.177-180,2014

空気調和・衛生工学会近畿支部学術研究発表会 機械学習を用いた既存建物の空調負荷予測手法 Cooling Load Prediction Method using Machine Learning for Existing Buildings

正 会 員 ○大原 誠(神戸大学/大阪国際工科専門職大学) 技術フェロ- 磯崎 日出雄(神戸大学) Makoto OHARA*1*2 Hideo ISOZAKI*1

*1 Kobe University *2 International Professional University of Technology in Osaka

This study aims to predict air conditioning loads for existing buildings using operational data, e.g. weather forecasts and visitor forecasts. The proposed prediction method is based on a neural network approach, which is a type of machine learning. However, not all loads are subject to learning in the proposed method. The loads are divided into load elements that can be mathematically predicted and other load elements that are subject to learning. The proposed method has been applied to an example instance using operational data from an underground mall in Kobe, and its validity has been confirmed.

はじめに

本研究の目的は、運用データの存在する既存建物に対 して、気象予報・入館者数予測などのデータを用いて、 翌日の将来負荷予測を行うことである。予測手法として ニューラルネットワーク(以下NN)法を利用したアルゴ リズムを提案する。神戸にある地下街で運用データを入 手する機会を得たので、過去時点に立ち戻ってこの予測 手法を適用し、実測負荷との比較を行ってその予測精度 を検証した。

今後の展開としてはこの負荷予測値を使い,2次側空 調設備の特性(空調機能力,温度,流量の関係式,文献 [3]参照)と組み合わせて,既存建物の冷水送水温度変 温設定,運転する熱源機種選定・運転時間設定を許容さ れる温熱環境幅の中で最大限省エネルギー的に立案する ことを狙っている。

1. 既存建物負荷予測の特徴と検討範囲

既存建物に対する空調負荷予測であるが故に従来行われてきた新築建築用の負荷計算とは異なる下記のような 条件がある。

- 過去の運転データと対応する負荷データ実績を学習して予測に生かすことができる。その際、必ずしも負荷計算条件(説明変数と呼ぶ)と負荷の間に数理的な因果関係を立てずとも、大量の学習データを使って統計的に算出することも可能である。
- 2) 建物の使われ方については設計時の想定を超えて

実態に合わせて入力する必要がある

 予測の当否について結果がすぐ出るのでパラメー タを変更して予測精度を改善していくプロセスを 期待できる

本研究の検討範囲は以下のように設定した。

- 1) 既存建物の翌日の1時間ごとの熱源負荷を予測す る
- 2) 負荷予測対象は予測による省エネ効果がより多く 見込める冷房負荷に限定し暖房負荷は扱わない
- 3)負荷推定の目的変数となる冷房負荷をゾーン分け するなどして細分化すれば、空調運転方式検討上 の利用価値は上がるが、そのためには負荷実績モ ニターポイントも同粒度で採る必要がある。近年 IT 技術の進歩で詳細な計測が現実的になってきて はいるが、ストック建物の省エネ化を視野に入れ ているので、改修工事費の抑制を考え、当面の対象 を建物全体の冷房負荷予測とした。

2. 空調負荷要素

応答係数法に基づく動的負荷計算法に関する既往研 究を参照して,空調負荷を表-1に示す10負荷要素ごとに その説明変数を想定し,建物全体負荷の説明変数を探索 する資料とした。なお負荷要素ごとの説明変数は一般的 な建物において計測可能かどうかを基準として選出した。 後述するように負荷要素ごとに負荷予測が可能な網掛を した項目の負荷については別途計上し,最終的に足し合 わせる計算方法を採用している。

No	空調負荷要素	説明変数	備考
1)	内外温度差による外壁貫流 熱負荷(ガラスからの貫流 負荷を含む)	現在外気温度,過去外気温度(50h 程度遡 る),過去日平均外気温度(3か月程度遡る), 現在水平面日射量,過去水平面日射量(50h程 度遡る)	 外気温度は、代表的な室内設定室温との偏差を説明変数とする 過去日平均外気温度は躯体蓄熱要素の影響が大きい場合に必要
2)	隣室よりの内壁貫流負荷	現在外気温度,過去外気温度(50h程度遡る)	
3)	ガラスを透過する日射によ る負荷	現在日時,水平面日射量,過去水平面日射量 (10h程度遡る)	・ 現状において簡単に入手できる気 象予報の内容を考え,説明変数を左記のよ うにした ・ 窓面日射負荷については,方位・窓 形状・ブラインドの使用率など,従来の負 荷計算上は複雑な IP が必要であるが,実 績負荷に基づく機械学習であるので簡便に 考えた
4)	隙間風による負荷	現在外気温度,現在外気湿度,現在外部風向・ 風速,建物の開口状態(スケジュール)	 建物の開口状態 (スケジュール) は出入口 の開放状態が定期的に変動する場合に利 用する
5)	人体の代謝による負荷	現在人員,過去人員(10h程度遡る),平均 作業強度	 潜熱負荷は即時負荷と考える 顕熱負荷については、重み係数により蓄熱 負荷を考慮する
6)	照明器具の放熱による負 荷	現在消費電力,過去消費電力(10h 程度遡 る)	 重み係数により蓄熱負荷を考慮する。
7)	その他の室内機器類の放熱 による負荷	現在発熱量(顕,潜),過去発熱量(顕) (10h 程度遡る)	 ・ 潜熱負荷は即時負荷と考える ・ ・ ・
8)	間欠的空調運転に起因する 蓄熱負荷	過去当該室室温(20h 程度遡る)	 代表的な室内設定室温との偏差を説明変数とする。
9)	外気負荷	外気取入れ量,外気温度,外気エンタルピ ー	 外気温度,外気エンタルピーは代表的な室内設定室温・エンタルピーとの 偏差を説明変数とする
10)	システム損失(ファン再熱、ダクト損,混合損失等)		

注)表中に「現在」とあるのは、予測対象時点を表す。予測を行う時点はこれより1~24時間程度手前になる。

3. 機械学習を用いた負荷予測手法

機械学習(NN法)を用いた既存建物全体の空調負荷の 予測手法を提案する。建物の全体負荷Lは、

 $L = f^{1}(\mathbb{X}^{1}) + f^{2}(\mathbb{X}^{2}) + \dots + f^{10}(\mathbb{X}^{10})$

と表せる。ここで*i*は負荷分類番号, $X^{i} = (x_{1}^{i}, x_{2}^{i}, ..., x_{n}^{i})$ は表-1で示した分類ごとの説明変数群、 f^{i} は負荷と説明変数の関係(写像)とする。一般に各要素別の 実績負荷値 $L^{i} = f^{i}(X^{i})$ は知り得ないためNN法における 建物全体の空調負荷予測として、全体負荷を出力(学習・ 予測対象)とし、各空調負荷要素の説明変数を入力とする 方法が考えられる。すなわち、

$L = G(\mathbb{X}^1, \mathbb{X}^2, \dots, \mathbb{X}^{10})$

で表される関数(写像)Gを学習する方法である。しかし、空調負荷要素の中には負荷と説明変数の関係が明らかなものがあり、例えば9)外気負荷は、説明変数である

外気取入れ量,外気温度,外気エンタルピーから簡単に計 算できる。簡単といっても負荷予測時には外気温度など を予測しなければならないがそれらについては天気予報 などを活用することができる。このように理論解によっ て妥当な推定が可能な空調負荷要素を以降,数理計算要 素と呼ぶ。本研究では学習対象の単純化のため,数理計算 要素は NN 法の対象外とする。そのほかの要素,例えば 1),2)のような多数室問題を含む伝熱負荷は,理論的に解 けなくはないが,入力として計測点を多く必要とし,建物 形状の正確なモデル化も煩雑であり,既存建物の負荷予 測としては過去データの学習によって算出するのが適当 だと思われる。よって本研究では、以降これらを学習推論 要素と呼び、

$$L - \sum_{j \in \{5,6,7,9\}} f^{j}(\mathbb{X}^{j}) = g(\mathbb{X}^{1}, \mathbb{X}^{2}, \mathbb{X}^{3}, \mathbb{X}^{4}, \mathbb{X}^{8}, \mathbb{X}^{10})$$

A-16

で表される関数(写像) gを学習する。

3.1 学習フェーズ

計測データを用いた学習時には以下のようにデータセットを構成する。

出カ)学習負荷量=全体負荷量 - 要素 5-7,9 の負荷量 入力)要素 1-4,8,10 の説明変数

3.2 予測フェーズ

空調負荷の予測時には、学習済みのNNモデルに要素 1-4,8,10の説明変数の計測値または予測値を入力し、得 られた出力に要素 5-7,9の説明変数の計測値または予測 値から算出された負荷量を足し、建物全体の空調負荷の 予測値とする。計測値と予測値の使い分けについては、1) の過去外気温度(50h程度遡る)のように予測対象時間帯 の空調負荷に履歴が影響する場合、予測実行時刻から見 て計測できているかどうかで分ける(図-1参照)。

図-1 入力における計測値・予測値の使い分け

4. 計算機実験

4.1 例題

神戸にある地下街「さんちか」(表-2 参照)の全体空調 負荷と各空調負荷要素の説明変数の計測データ (2019, 2020年の6~9月。1時間値)を用いて空調負荷 予測実験を行った。データセットの一部(8割)を用いて 学習し、一部(1割)は学習の進捗状況の判定(過学習が 起きていないか、など)に用いた。残り(1割)の説明変 数のデータを用いて空調負荷を推論し、予測精度の検証 とした。これは実予測の代替で、実使用の際は計測データ だけでなく天気予報などを用いる必要がある。また、事例 のシステム上の都合で全体空調負荷は空調機群へ送られ る2次側冷水往・還管間の熱量差の測定値とした。従っ て熱源負荷を議論するためには、若干の割り増しを考え る必要がある。

4.2 学習設定

対象が地下街のため、表-1の空調負荷要素のうち、日 射による影響は無視した。よって数理計算要素は、現在人 員(※計測方法については文献[4]を参照),過去人員 (10h),現在照明用消費電力,過去照明用消費電力(10h), 現在その他発熱量、過去その他発熱量(顕)(10h),外気 取入れ量,外気温度,外気エンタルピーから算出した(表 -3参照)。

学習推論要素の説明変数は現在外気温度,過去外気温 度(50h),過去日平均温度(3か月),現在外気湿度, 現在外部風向・風速,過去当該室室温(20h)をとした。 当該建物は空調時間帯において常に開口しているため開 口状態は対象外とした。なお各変数の値は対象期間にお ける最大値が1となるように正規化して与えた № 法の設定を表-4に示す。

表-2 対象地下街概要

※環境省・平成26年度大規模CO2削減ポテンシャル調査報告書より抜粋							
名称	三宮地下街(さんちか)						
建設年度	1963年(第1期)						
	1966年(第2期)						
経営主体	神戸地下街株式会社						
延床面積	19,109m ²						
商業面積	10,145m ²						
営業時間	10:00~20:00(物販)						
	11:00~21:00(飲食)						
	6:00~24:00(通路)						
流動人口	1日約15万人						

表-3 例題における数理計算要素の算出方法

人体の代謝による負荷
顕熱負荷=(1人当たりの想定瞬時顕熱放熱量×予測現
在通行時間総和)+(過去の人体由来予測顕熱取得を人
体用重み係数で畳み込んだ値)
潜熱負荷=一人当たりの想定瞬時潜熱放熱量×現在予測
通行時間総和
照明器具の放熱による負荷(その他の機器類発熱もこれに
準ずる)
顕熱負荷=(現在想定照明消費電力(実績値ベース)×
照明用重み係数初項)+(過去の照明由来想定熱取得を
照明用重み係数で畳み込んだ値)
外気負荷
全熱負荷=外気風量(測定実績値ベース)×(予測外気
比エンタルピー-室内設定比エンタルピー)

表−4 NN 法設定

入力層	入力サイズ	28					
中間層	層数	2					
中間層共通	種類	全結合					
	活性化関数	ReLU(ランプ関数)					
中間層1	ユニット数	20					
中間層2	ユニット数	10					
出力層	種類	全結合					
	出力サイズ	1					
その他	バッチサイズ	10					
	エポック数	30					
	試行数	10					

4.3 予測設定

今回は純粋にNN法の性能を確認するため、過去のデー タセットを使って計算を行った。実使用であれば予報値、 予測値を使うべきところも計測値を用いた。実使用の際 には適宜説明変数の値として空調温度の設定値、天気予 報などを利用する(人員に関する予測手法については文 献[5]を参照)。

4.4 結果

提案手法による推定結果を図-2 に示す。縦軸が推定結 果、横軸が対応する実測値であるため、赤点線(斜め45 度の先)に近ければ精度が高いことを表す。NN法の学習 済みモデルによる推定結果を実測値と比較した結果R2係 数で0.62となった。またNN法の推定結果にあらかじめ 差し引いていた数理計算要素の負荷を足し戻した場合、 つまり数理計算要素の予測が完全だと仮定した場合の負 荷全体の推定結果はR2係数で0.88となった。

推定結果と実測値のずれが大きかった所(図-2の左下 部分)について調べた所、朝7時〜朝9時の所が多く、 現状の提案手法では空調の立ち上がり時の考慮が不十分 な可能性がある。

5. おわりに

本研究では、開放部を持つ地下街の効率的な空調運用 を目標に、空調負荷の予測手法を検討した。また神戸の地 下街の実際のデータに基づき学習手法を検討した。今後 の課題として、実使用時を想定した予測評価および異な る手法との精度検討などが挙げられる。

謝辞

フィールドとして使わせて頂いた神戸地下街株式会社の方々 には大変お世話になりました。ここに記して謝意を表します。 本研究は、JSPC 科研費 JP18K04456の助成を受けたもので す。また本研究に使用したデータは平成30年度 環境省C02 排出削減対策強化誘導型技術開発・実証事業にて収集されたも のです。

参 考 文 献

- 松尾陽,横山浩一,石野久弥,川本昭吾,空調設備の動的 熱負荷計算入門,(社)建築設備技術者協会,1980年3 月
- 2) 岡谷貴之, 深層学習, 講談社, 2015年4月
- 3) 小田久人、中尾正喜、藤堂聖真、磯崎日出雄、空気調和機の冷却コイル特性同定モデルの研究(第1報)グレーボックスモデルの設定と同定精度の検討、空気調和・衛生工学会大会講演論文集、2020年9月、E-6
- 4) 大原誠,松本卓也,鈴木義康,長廣剛,玉置久,LRFを 用いた地下街における人流推定手法,システム制御情報 学会研究発表講演会 2018,2018 年5月
- 5) 大原誠, 松本卓也, 榊原一紀, 鈴木義康, 長廣剛, 玉置久, 開放部を持つ地下街での空調運用のための人密度予測手 法, 計測自動制御学会 システム・情報部門学術講演会 2020 (SSI2020), 2020 年 11 月

さいたま市内公立小・中学校教室の高性能化改修に関する検討 空調負荷削減と校舎長寿命化に向けた改修効果の数値評価 Research on High-Performance Retrofit of Classrooms in Public Elementary and Junior High Schools in Saitama City Numerical Evaluation of Retrofit Effects for Reducing Air Conditioning Load and Extending

the Life of School Buildings

○脇 日出海(ハイシマ工業㈱) 芝池 英樹(建築都市科学ラボ) 蓜島 一弘(ハイシマ工業㈱)

Hideumi WAKI*1 Hideki SHIBAIKE*2 Kazuhiro HAISHIMA*1 Hanako EISEI*3

*1 Haishima Industry Co. Ltd. *2 Building and Urban Science Lab.

Taking into account the renovation principles for extending the service life of school buildings published by MEXT and MLIT of GOJ, numerical simulations are carried out for choosing effective high performing retrofitting strategies to reduce cooling and heating energy consumptions as well as to provide the comfort indoor hygrothermal conditions with the necessary ventilation rate against COVID-19 prevention. The classroom with 35 children located in the top floor and west end (CaseTW) shows 65% reduction of annual air-conditioning energy consumption based on the current reference model.

1. はじめに

文部科学省、国土交通省等からは学校建築の長寿命化 改修の方向性が示され指針等が公開されており、その流 れと一致する具体的検討を進めることが求められている。

一方で、昨今の公立学校では、新型コロナ禍への感染防 止対策に配慮した対面での授業運営が不可避となり、窓・ 入口開放により自然換気量の最大化を計ることが常態化 しており、猛暑期や厳寒期の冷・暖房エネルギー消費量が 鰻のぼりに増えている。

さらに気候変動の影響を受けて、学休期間前後の学期 中にも猛暑日、もしくは冬日や真冬日が生起することが 頻発し、解放教室で冷・暖房を利用するとエアコン消費電 力が激増し、電力需給をひっ迫させる要因とも成り得る。

これらを踏まえて、35人学級で必要十分な換気量を確保しながら、期間の冷・暖房エネルギー消費量(電力消費量)やピーク時の消費電力(契約電力)を抑制できる教室の高性能化改修を検討し、同時に学校建築の長寿命化を実現できる方策を導き出すことが本研究の目的である。

ここで言う「高性能化改修」とは、教室棟外皮の各種改 修と空調設備システム(全熱回収型換気システム+冷・暖 房HPエアコン)の組合せ改修を意味し、空調設備システ ムの運用条件等も含めて検討を行うものであり、多数室 非定常熱・湿気同時移動計算が可能な Windows アプリケ ーション WUFI Plus 等による数値予測結果を比較する。

2. 検討対象とする高性能化改修方策

本稿で検討対象とする高性能化改修方策の概要を

Fig. 1 に示す。主要な方策は、①全熱回収型換気装置(ERV) の導入、②外皮用高反射塗料の使用、③窓面の日射遮蔽対 策、④Low-E 複層ガラスへの交換、⑤EIFS 外断熱工法に よる断熱改修の5種類である。学校建築の長寿命化も目 的の一つとしており、断熱改修方策については、内断熱工 法よりも建物外皮の保護効果が高く、工事期間中も教室 利用が可能な EIFS 外断熱工法を採用することとする。

3. 数值評価方法

多数室に生じる非定常熱・湿気同時移動を数値予測で きる Windows アプリケーション WUFI Plus Ver3.2 を用 いて教室の熱・湿気性状について比較評価する。

本稿では、さいたま市の現存学校建築の教室形状を参照して作成した 3×3 の南面するモデル教室棟を想定し (Fig. 2)、上下左右に教室がある「CaseMI:規準教室モデル」と最上階西妻壁のある「CaseTW:周辺教室モデル」2モデルを数値評価の対象として、各モデルに対し高性能化

Fig.1 High performance retrofit strategy

Table.1 Computational conditions for CaseMM

	ERV	ERV	日除け	Low-E	Low-E	EIFS	EIFS
	常時	バイパス+ ナイトパージ		断熱	遮熱	t=40mm	t=80mm
MM-0'	-	-	-	-	-	-	-
MM -0	-	-	-	-	-	-	-
MM-1	۲	-	-	-	-	-	-
MM-2	-	•	-	-	-	-	-
MM-3	-	-	•	-	-	-	-
MM-4	-	-	-	•	-	-	-
MM-5	-	-	-	-	•	-	-
MM-6	-	-	-	•	-	•	-
MM-7	-	-	-	-	•	•	-
MM-8	-	•	•	•	-	•	-
MM-9	-	•	•	•	-	-	•

Table.2 Computational conditions for CaseTW

	ERV	ERV	高反射	日除け	Low-E	Low-E	EIFS	EIFS	
	常時	バイパス+ ナイトパージ			断熱	遮熱	t=40mm	t=80mm	
TW-0'	-	-	-	-	-	-	-	-	➡ 現状 ACH7.0(窓全開放を想定(CDC基準
TW-0	-	-	-	-	-	-	-	-	➡ 現状 ACH3.8(厚労省コロナ感染症対策
TW-1	•	-	-	-	-	-	-	-	➡ ERV(潜熱・顕熱65%回収)追加
TW-2	-	•	-	-	-	-	-	-	➡ ERV追加(夏期バイパス換気+ナイトパー
TW-3	-	-	•	-	-	-	-	-	➡ 屋根面のみ高反射塗料使用
TW-4	-	-	-	•	-	-	-	-	➡ 教室南面窓のみ日除け設置(冷房期間の)
TW-5	-	-	-	-	•	-	-	-	➡ 断熱型Low-E複層ガラスに交換
TW-6	-	-	-	-	-	•	-	-	➡ 遮熱型Low-E複層ガラスに交換
TW-7	-	-	-	-	•	-	•	-	➡ 断熱型Low-E複層ガラス+EIFS(t=40mm
TW-8	-	-	-	-	-	۲	۲	-	➡ 遮熱型Low-E複層ガラス+EIFS(t=40mm
TW-9	-	•	•	•	۲	-	•	-	➡ 全対策(断熱型Low-E+EIFS(t=40mm)
TW-10	-					-	-		➡ 全対策(断熱型Low-E+EIFS (t=80mm))

改修の各方策を採用した場合の冷・暖房・除湿負荷および 消費電力を算出して比較検討する。

3.1 基本計算条件

各種ケースに共通する計算条件を以下に記す。

(1)室内条件

1 クラス 35 人学級を想定し、8 時~16 時まで教師 1 人 と生徒 35 人の計 36 人が在室しているものとする。

毎週土曜・日曜を休日とし、3/25~4/7を春休み、7/21 ~8/25 を夏休み、12/24/~1/5 を冬休みとして、学休期 間中の教室は在室なし、照明も未使用状態とする。

(2) 空調設定条件

温度設定は18~26℃とし、湿度設定は上限70%とする。 暖房稼働期間は12/1~3/31、冷房稼働期間は6/1~9/30 として、休日を除く教室在室時(8時~16時)のみ稼働 させるものとする。

除湿に関しては、エアコンによる除湿を想定して冷房 稼働中のみ除湿が発生するものとする。

(3) 換気設定

大人1人当たりの換気量30 m³/h (厚生労働省の新型コ ロナ感染症対策基準)、子供1人当たりの換気量20 m³/h (大人の2/3倍)として、教室在室時のみ730 m³/h (≒ ACH3.8)の換気を行うものとする。

ただし、窓や入口を全開放することを新型コロナ感染 症対策として実施している学校での現状を鑑み、「医療施 設における環境感染管理のための CDC ガイドライン」を 参考に、1時間のうちに 99.9%空気汚染粒子を除去する のに必要な換気回数 (ACH7.0) を入力した場合についても 併せて評価する。 漏気回数は0.3回/hとする。

(4)バイパス換気・ナイトパージ採用時

バイパス換気・ナイトパージを行うケースに限り、6/1 ~9/30の期間(夏休みを除く)、終日バイパス換気を行い、 教室在室時間外も在室時の0.5倍の風量で換気を行う。

3.2 各種計算条件

高性能化改修の各方策の効果と、それらを組み合わせた場合の効果を比較・検討するため、CaseMM については10ケース、CaseTW については11ケースの数値評価を行う。CaseMM の各ケースの高性能化改修方策の採用状況をTable.1 に、CaseTW の各ケースの高性能化改修方策の採用状況をTable.2 に示す。

高反射塗料を使用する場合(TW-3)は、防水工事に伴う 屋根塗装工事を想定し、屋根面の日射吸収率のみを0.85 から0.40に変更し、外壁面は現状のままで計算する。

また、EIFS 外断熱工法を採用する場合について、外壁

Fig.2 3×3 classroom building model

塗装を高反射塗料で行うと想定して日射吸収率を0.85から 0.40 に変更し、屋根面は現状のままとして計算する。

4. 計算結果の評価

4.1 標準教室モデル: CaseMM の結果

CaseMMの計10ケースに関する冷・暖房・除湿負荷年間 積算値の比較結果をFig.3に示す。

現状の学校建築で厚労省の新型コロナ感染症対策基準 を満たす換気量を確保した場合の計算(MM-0)を基準とす ると、ERVを使用することで暖房負荷を削減することが可 能だが(MM-1)、夏期はそれが排熱を回収して冷房負荷を 増加させる結果となるため、バイパス換気とナイトパー ジを行う必要があることが読み取れる(MM-2)。

夏期に日除けを設置すること(MM-3)については、当然 のことながら冷房負荷削減が期待できて効果的な対策と なるが、Low-E 複層ガラスを採用することについては、断 熱型(MM-4)、遮熱型(MM-5)ともに冷房負荷削減には効 果がある反面、暖房負荷を増加させてしまうことになり、 結果として年間の空調負荷総量は増加している。この原 因としては、現状のアルミサッシの単板ガラス窓の方が 日射を多く取得することと、日射取得のある時間帯が主 な利用時間帯であるという学校建築の特性が主因であり、 学校の高性能化改修として窓の改修のみを単独で行うこ とは効果的でないことを示している。

EIFS 外断熱工法と Low-E 複層ガラスの組み合わせ (MM-6, MM-7) については、断熱型 Low-E 複層ガラスを使用し た場合 (MM-6) のほうが年間の空調負荷総量を削減できて いることが読み取れる。そのため、すべての対策を講じた 場合の計算 (MM-8, MM-9) については断熱型 Low-E 複層ガ ラスを採用することとしている。

MM-8 と MM-9 の違いは断熱厚の違いであるが、外皮面 積の比較的少ない CaseMM の計算では、断熱厚が2倍とな っても年間の空調負荷総量に大きな違いは見られない。

既存の学校に導入されているエアコンの COP((冷房/暖 房) 2.97/3.45) から消費電力を算出した場合、MM-0 を基 準として MM-9 は 57.3%消費電力を削減できる。

4.2 周辺教室モデル: CaseTW の結果

CaseTW の冷・暖房・除湿負荷の年間積算値のグラフを Fig. 4 に示す。

基本的には 3.1 の CaseMM の結果の傾向と似ているが、 CaseMM にはない屋根面に高反射塗料を使用した場合の計 算(TW-3)を取り上げると、現状の計算(TW-0)と比較し て冷房負荷が削減される反面、暖房負荷が増加してしま い、年間の空調負荷総量はほとんど変わらない結果とな っている。屋根スラブの厚さは 200mm の設定であるが、 コンクリートの蓄熱性能の高さも相まって屋根スラブか ら熱が流入し、夏期は冷房負荷の増加に、冬期は暖房負荷 の削減に寄与していた分を、高反射塗料を使用すること で抑えた結果だと読み取ることができる。

高反射塗料を屋根に使用することについても、Low-E 複 層ガラスを採用することと同様に、高性能化改修として それ単独で導入することは難しいと判断できる。

CaseMM の場合と同様に消費電力を算出した場合、TW-0 を基準として TW-10 は 65.0% 消費電力を削減できる。

5. EIFS 外断熱工法と内断熱工法の数値的比較評価

学校建築の長寿命化を目指すために、本稿では建物外 皮の保護効果が高い EIFS 外断熱工法を採用しているが、 学校の省エネルギー化と教室の温熱環境改善を目的とし て内断熱工法による実験的改修工事例の報告が見られる。 ここでは、EIFS 外断熱工法と内断熱工法の省エネルギー と室内温熱環境への効果の比較検討を行うこととする。

5.1 計算条件

外皮の断熱効果比較のためCaseTWを検討対象とし、同時に窓改修も想定しTW-7の条件を規準に計算する。内断熱と外断熱で使用できる断熱材料は違い性能も異なるので、各部位熱貫流率が各々等しくなるよう厚さ調整する。

5.2 数值評価結果

内断熱と外断熱の夏期1週間の各部時系列温度変動を 各々Fig.5、Fig.6に、冬期1週間の各部時系列温度変動 を各々Fig.7、Fig.8に示す。夏期・冬期に共通する特徴 として、内断熱と比べて外断熱は教室非使用時間帯の温

熱環境が改善されるという利点がある。現実の学校運用 では放課後や休日に数教室が使用されることが想定され るので、非空調時間帯の温熱環境改善は利用者の快適性 向上への効果が期待できる。また、外断熱により教室の使 用・未使用に関わらず室内表面温度変動が安定し、躯体の 温・湿度変動幅が限定され、熱・湿気的な膨張・収縮の抑 制効果が期待できる。省エネルギー面では、年間の冷房と 暖房負荷について、内断熱は1802.2kWh と 972.2kWh であ るのに対し、外断熱は 1718.0kWh と 1300.6kWh になって おり、内断熱のほうが負荷総量は小さい。この違いは躯体 への蓄熱分が少ないためである。

6. まとめ

40

文部科学省、国土交通省等で指導されている学校建築 の長寿命化改修の方向性を念頭に、35人学級でコロナ禍 において必要十分な換気量を確保しながら、期間の冷・暖 房エネルギー消費量(電力消費量)を抑制できる教室の高 性能化改修を検討した。周辺教室モデル (CaseTW) では、 全対策を組み入れた高性能化改修により、現状計算結果 (換気回数 3.8 回)の年積算電力消費量を 65.0%、上下 左右に教室がある規準教室モデル (CaseMM) では年積算電 力消費量を57.3%削減できることを確認した。

また、これまでに実験的実証事例(内断熱工法による改

修)と比べ、EIFS 外断熱工法は学校利用者により快適な 室内温熱環境が提供でき、躯体の外乱による膨張・収縮を 抑制し建物長寿命化に寄与できる可能性を示した。

今後もさらなる検討を続け、本稿で示した高性能化改 修による建物躯体の長寿命化について定量的な評価を行 うとともに、コスト評価の精度向上を計る必要がある。

謝辞 本稿の一部は、公立学校施設の運営管理に関わるさいた ま市関係各位から寄せられたご意見を参考にした。

参考文献

- 1) 文部科学省,学校施設の長寿命化計画策定に係る手引,2015 年4月.
- 2) 文部科学省,小学校施設整備指針, 2022年6月.
- 3) さいたま市、さいたま市公共施設マネジメント計画・第1次 アクションプラン、2018年3月.
- 4) H. M. Künzel, Simultaneous Heat and Moisture Transport in Building Components One- and Two-Dimensional Calculation Using Simple Parameters, IRB Verlag, 1995.
- 5) H. M. Künzel et al, Simulation of Indoor Temperature and Humidity Conditions Including Hygrothermal Interactions with the Building Envelope, Solar Energy 78, 2005.
- 6) CDC, Guidelines for Environmental Infection Control in Health-Care Facilities, 2003.

Fig.8 Temperature profiles for EIFS in winter

都市の熱環境計画やインフラ計画のための時系列人流データの分析手法の検討

Investigation of methods for analyzing timeseries human flow data for urban thermal environment planning and infrastructure planning

○早川 大地(神戸大学) 竹林 英樹(神戸大学)
 Taichi HAYAKAWA^{*1} Hideki TAKEBAYASHI^{*1}
 *¹Kobe University

In this study, a cluster analysis using SPSS was conducted on the passenger count data of nine locations in the Sannomiya area, which were measured and disclosed by Kobe City, to explore the analysis method of passenger count data for thermal environment planning and infrastructure planning. The clusters were classified on the basis of the number of passengers throughout the day and the difference in number of passengers around 8:00 a.m. on different days of the week, and the classification results reflected the characteristics of each location, similarities among locations, and the characteristics of people flow in the Sannomiya area.

1. はじめに

近年,IT 技術の普及・拡大により人流データが計測・ 利用され始め、2020年の新型コロナウイルス流行をき っかけにその重要性が広く認識されるようになった. こうしたデータは一般に公開されるものも増えており、 交通機関や店舗などでの利用のほか、行政機関におけ る防災・交通・観光などの地域課題への利用など、官 民問わず多様な分野での活用が進みつつある^{1,2}.

本研究では、都市の熱環境計画やインフラ計画への 人流データの活用を想定し、神戸市により公開された 三宮地区の9地点の通過人数のデータを対象として、 時系列特性や空間分布の特徴を分析する.具体的には、 通過人数の時系列データをクラスター分析し、分類結 果の特徴を考察することで、通過人数に影響を与える 要因を分析する.さらに地点間での通過人数の変化の 特徴の関係を分析し、地域全体の特性を考察する.

2. 分析の概要

2.1 分析データの概要

本研究では、神戸市と連携して関西電力株式会社と 株式会社オプテージが赤外線センサーを用いて計測し、 神戸市により公開されている通過人数のデータを用い た(図1).提供期間は2020年2月1日から2021年3 月23日で、一時間ごとの通過人数のデータである.こ のうち2020年7月25日から9月30日は欠測であり、 各地点でセンサーの停止やデータの欠損が見られる日 は分析対象外とする(表1).

2.2 分類方法

各日一時間毎の通過人数を 24 次元の多変量データ とみなして SPSS を用いたクラスター分析を行った.出 発行列には相関行列を用いた.固有値が 1 以上になる 主成分を採用した.次に主成分得点を計算し,その得 点を用いて階層クラスター分析を行った.サンプル間 距離にはユークリッド距離を用い,グループ間平均連 結法により分類した.得られたデンドログラム(樹形 図)より,3~10 個のグループ数となるように一定の距 離で線引きを行い,グループに分類した.

Fig.1 Location of infrared sensors

magazing point	No	Number of	Average number of
measuring point	INO.	measurement days	passengers per day
Koikawa-suji	1	318	41,225
Flower rode	2	325	28,649
Center Gai Shopping St 1 East end	3	333	23,943
Sunset-dori	4	335	20,661
Center Gai Shopping St 2 West end	5	329	19,242
Deck in front of Hankyu	6	331	14,291
Ikuta rode in front of the first torii gate of Ikuta Shrine	7	341	11,662
2F above JR Sun City Pedestrian Bridge	8	340	7,263
Nakamachi-dori	9	278	6,901

Table.1 Number of measurement days and average number of daily passengers at each location

3. 通過人数の時刻変化の分類

3.1 各地点の通過人数の時刻変化

各地点の主成分分析結果より,どの地点でも寄与率 の高い主成分として,一日を通した通過人数,8時頃の 通過人数などが推察された(図2).

第一主成分は、すべての時刻において正で、11 時~ 24 時に 0.8 以上となる.また、緊急事態宣言期間の主 成分得点が小さい.したがって、一日を通した通過人 数を表していると解釈される(図 3).

第二主成分は、7時~9時に0.8以上となり、他の時 刻は小さい.また、主成分得点は正負の変動が大きい. したがって、平日と休日の8時頃の通過人数の差を表 していると解釈される(図4).

多くの地点で、平日と休日のクラスターが複数分類 された. 鯉川筋の分類結果を図 5 に示す. 平日のクラ スター(実線)と休日のクラスター(破線),第一回緊 急事態宣言期間(2020年4月7日~5月21日)を多く 含むクラスター(一点鎖線)が確認される. 平日は朝 夕の通勤,通学時にピークを持つものが多く,休日は 14時~16時にピークを持つものが多い.平日,休日の クラスターは通過人数の大小により更に分類された.

3.2 分類結果の特徴

鯉川筋のクラスター分類結果(図5)より,第一回緊急事態宣言期間の日が多く分類されたクラスター7の通過人数は,他のクラスターと比較して,休日は約68%,平日は約66%減少した.他の地点でも,緊急事態宣言期間の日が多く分類されたクラスターの通過人数は,約45%~80%減少した.

サンセット通りの分類結果(図 6)では、クラスター 1には金曜日と土曜日、クラスター2、4には日曜日か ら木曜日、クラスター3には第一回緊急事態宣言期間 の日、クラスター5(二点鎖線)には第二回緊急事態宣 言期間(2021年1月14日~2月28日)の日が多く分類 された.飲食街であるサンセット通りでは、翌日が休 日である金曜日と土曜日の特徴が抽出された.

Fig.2 Contribution by each principal component at Koikawa-suji

Fig.3 First principal component score at Koikawa-suji

Fig.4 Second principal component score at Koikawa-suji

A-18

4. 通過人数の特徴に基づく測定地点の分類

地域全体の通過人数の特性を考察するために,測定 地点の分類を行った.各地点の主成分分析結果やクラ スター分類の結果より,4つの時刻変化の特徴量(平日 クラスター,休日クラスターの最大値,平日クラスタ ー,休日クラスターの8時の通過人数)を選定し,こ れらの特徴量により代表される4次元の多変量データ とみなし,主成分分析,クラスター分析を行ったとこ ろ,5つのクラスターに分類された(図7,表2).

主に一日を通した通過人数により分類された.クラ スター4には、平日8時の通過人数を特徴として、い くたロードが分類された.

クラスター1 に分類された鯉川筋とフラワーロード は、それぞれ元町駅、三宮駅から南下する大通り沿い で、平日の8時と18時にピークが出現する.クラスタ ー4のいくたロードでも同様のピークが出現し、3地点 はすべて南北道路である.駅とのアクセスの特徴は南 北方向の道路で顕著に確認される.

Fig.14 Cluster classification results at 9 sites

Location	Cluster Number
Koikawa-suji	1
Flower rode	1
Center Gai Shopping St 1 East end	2
Sunset-dori	3
Center Gai Shopping St 2 West end	3
Deck in front of Hankyu	3
Ikuta rode in front of the first torii gate of Ikuta	4
2F above JR Sun City Pedestrian Bridge	5
Nakamachi-dori	5

本研究では、神戸市により公開された三宮地区の9 地点の通過人数のデータ(人流データ)を、SPSSを 用いて統計的に分類し、時刻変化の特徴を考察した. 各地点での分類結果は、主に平日と休日のクラスタ ーに分類され、第一回緊急事態宣言期間を多く含むク ラスターも確認された.平日、休日のクラスターは一 日を通した通過人数により更に分類された.主成分分 析の結果から、各地点での分類の主な要因は一日を通 した通過人数であり、他の要因は平日と休日の8時の 通過人数の差と推測された.熱環境計画やインフラ計

通過人数の時刻変化の特徴量を用いてクラスター分 類を行い,計測地点が5つに分類された.平日と休日 ともに一日を通した通過人数の大きい地点は熱環境計 画やインフラ計画の中心地となる.平日の通勤,通学 時に明確なピークが出現する地点はその時間に特化し た対策が有効である.

画においても、平日と休日の通過人数の差を想定した

計画や運用が求められる.

本研究で検討した通過人数の時刻変化の特徴を抽出 する統計的な分類方法は、より多くの計測地点のデー タに適用することで、都市や街区における熱環境計画 やインフラ計画の検討などに有効に活用できる可能性 がある.

参考文献

 今井龍一,深田雅之,重高浩一,矢部努,牧村和 彦,足立龍太郎,多様な動線データの組合せ分析によ る都市交通計画への適用可能性に関する考察,第47
 回土木計画学研究発表会・講演集,2013
 2)国土交通省,地域課題解決のための人流データ利 活用の手引き,25,2022

RANS による定常解析及び LES による非定常解析に基づく街区形態と風通し環境の関係に 関する研究

Study on the relationship between urban block characteristics and the ventilation environment of the city based on RANS and LES

○山腰 和希(神戸大学) 竹 林 英 樹(神戸大学)
 Kazuki YAMAKOSHI *1 Hideki TAKEBAYASHI *1
 *1 Kobe University

In this study, we analyzed the relationship between urban block properties and wind environment in downtown Kobe based on RANS model, and analyzed in some districts with different urban block properties within the target area by LES model. LES model can reproduce eddies and time fluctuations that cannot be detected by RANS model. The analysis results by LES model follows those by RANS model, except of roads along the main wind direction. LES model reproduced the air flow into the street canyon along the main wind direction caused by high-rise buildings, which was not reproduced by RANS model. RANS model evaluated the risk of weak winds highly, while LES model evaluated it low.

1. はじめに

上空風を市街地内に取り入れて風通しを促進し,地 表付近の熱を上空へ拡散させることは,ヒートアイラ ンド対策の一つである.街区形態と風通しの関係を分 析した既往研究では,計算負荷の観点から乱流モデル にレイノルズ平均 (RANS) モデルが用いられる場合が 多い. RANS による分析では,実測結果より弱風リス クが過大評価されると指摘されている¹⁾.本研究では, 神戸市中心部を対象として RANS の定常解析を実施し, 街区の特性と風環境の関係を分析し,対象領域内の幾 つかの領域で LES による非定常解析を行い, RANS モ デルでは探知できない渦や時間変動を分析した.

2. 数値計算の概要

2.1 計算領域と格子間隔

Fig.1 に神戸市中心部の解析対象領域を示す. Fig.2 に異なる街区特性を持つLESによる非定常解析 の対象領域を示す. 2011 年に構築された建物形状デ ータを, google earthより得られる3次元モデルデ ータに基づいて2022 年時点の街区形状に更新した.

水平方向の格子間隔は,解析対象領域内で RANS は 2.0m, LES は 0.8m,解析対象領域外で徐々に広がる不 等間隔とし,鉛直方向は最高建物高さまで 0.8m,そ れ以上は徐々に広がる不等間隔とした.

Fig1. Objective site for RANS model

Fig2. Objective site for LES model

2.2 計算方法

流入・流出境界は自然流入流出条件,上空及び側面 境界は free-slip 条件,地面及び壁面境界は一般化対 数則条件を設定した.流入境界は高さ 100m の風速を 4.1m/s としたべき乗則で与え,風向は南西とした. RANS には k- ϵ 型 2 方程式乱流モデルを用い,LES に は Smagorinsky モデルを用いた.

3. 精度検証

3.1 測定の概要

2022 年 8 月 14 日の 10 時から 12 時, 15 時から 17 時に Fig. 3 に示す測定地点(高層建築物が多く道路幅 の広い交差点周辺)において,地表面からの高さ 1.5m における風速を,各地点1秒間隔で1分間測定した.

3.2 数値計算結果

当該交差点付近の RANS, LES の風速比(地上風速/ 上空風速)分布, LES の標準偏差分布を Fig. 4~6 に 示す. LES により建物隅角での剥離が再現されている. Fig. 7 に示す通り, LES による風速比の標準偏差が大 きいと,両計算結果の差が大きい.建物隅角部の剥離 や逆流領域で RANS の結果は過小評価する傾向にある.

3.3 実測結果と計算結果の比較

各測定点における実測結果, RANS, LES による計算 結果から算出した平均風速比を Fig. 8,9 に示す. RANS の結果はいずれの測定点でも小さく,特に交差点や高 層建物の隅角部などで著しく乖離した. LES の結果は 実測値より変動は小さいが,平均風速比はよく一致し

Fig.3 Measurement points for wind velocity

た. 今回実測調査を行ったような風速比の小さい街区 では, RANS による数値計算結果は風速比を過小評価 する可能性があることに注意が必要である.

Fig.5 Average wind velocity ratio by LES model

Fig.6 Standard deviation of wind velocity ratio by LES

Fig.7 Relationship between subtraction the average wind velocity ratio of LES from the average wind velocity ratio of RANS, and standard deviation from LES model

Fig.8 Average wind velocity ratios from 10:00 to 12:00 by measurement and calculation results

Fig.9 Average wind velocity ratios from 15:00 to 17:00 by measurement and calculation results

4. 街区特性と風通し環境の関係

4.1 面的な建物特性と風通し環境の関係

RANS では、グロス建蔽率や平均建物高さ基準の高 さ方向グロス建蔽率が小さい領域では平均風速比と 負の相関関係が確認されるが、それらの指標が大きい 領域では平均風速比が一様に小さく、明確な関係が確 認されない、グロス建蔽率が40%未満の場合に、建物 高さのばらつきと平均風速比に負の相関関係が確認 される. Fig. 10 に示すように、LES ではグロス建蔽率 が25%未満の場合に RANS と同等の平均風速比である が、25%以上の場合には RANS より0.17~0.25 程度大 きい.

4.2 街路形態の特性と風通し環境の関係

RANS では道路幅,道路周辺オープンスペース率, 平行道路以外での道路周辺平均建物高さと平均風速 比に正の相関関係が確認される.Fig.11 に示すよう に,LES の平均風速比は街路全体で RANS より 0.15~ 0.25 ほど大きい.LES では,平行道路においても上空 風が高い建築物の影響で街区内に流れ込む様子が再 現され,Fig.12 に示すように平行道路の場合でも, 道路周辺平均建物高さと平均風速比に正の相関関係 が確認される.

4.3 交差点形態の特性と風通し環境の関係

RANS では、交差点隣接最大道路幅、交差点周辺オ ープンスペース率と平均風速比に正の相関関係が確 認される.交差点隣接最大道路幅が20m未満では、 交差点周辺平均建物高さと平均風速比に正の相関 関係、20m以上では負の相関関係が確認される.狭 い交差点では、交差点周辺の建築物により上空風 が交差点内に引き込まれる影響が表れ、広い交差 点では、交差点周辺の建物による抵抗の影響が支 配的になると考察される.Fig.13に示すように、LES の平均風速比は、交差点全体でRANSより0.15~0.25 程度大きい.

4.4 弱風リスク

村上ら²⁾が提案した風環境評価尺度を参考に「弱風 による非適風」は風速0.7 m/s以下とし,弱風リスク を評価対象範囲内で「弱風による非適風」に該当する 割合と定義する.弱風リスク70%以上を高リスク,40% ~70%を中リスク,40%以下を低リスクと分類する. RANS では全体的に弱風リスクが高く,LES ではほぼす べての場合で RANS と同等か低い.精度検証を行った 交差点付近の RANS,LES の「弱風による非適風」の範 囲,弱風リスクの評価結果をFig.14,15 に示す.RANS で低リスクと評価された街路が,LES では高リスクに 評価される場合もあり,更に多くのLES による検討が 必要である.

Fig.10 Relationship between gross building coverage ratio

and average wind velocity ratio

Fig.11 Relationship between direction of roads and average wind velocity ratio

Fig.13 Relationship between the maximum road width adjacent to intersections and average wind velocity ratio

Fig.14 The area of weak wind (a)RANS (b)LES

Fig.15 The risk of weak wind (a)RANS (b)LES

5. まとめ

神戸市中心部の街区を対象として実測結果と比較 し,RANSの定常解析,LESの非定常解析の精度を検証 した.実測対象街区の様に風速比の小さい街区では, RANSは風速比を過小評価する可能性が高い.LESは実 測値より変動は小さいが,平均風速比はよく一致した.

RANS により対象領域全体の風環境を評価し, LES に より特定の領域で詳細な検討を行った. LES による街 区形態と風通し環境の関係は概ね RANS による分析結 果を追随し, RANS では再現されなかった, 平行道路 において高い建築物が上空風を街区内に引き込む様 子が再現された.

RANS では全体的に弱風リスクが高いが,LES では RANS と同等か低く評価された.RANS で低リスクと評 価された街路が,LES では高リスクに評価される場合 もあり,更に多くのLES による検討が必要である.

参考文献

 H. Takebayashi, M. Okubo, H. Danno, Thermal Environment Map in Street Canyon for Implementing Extreme High Temperature Measures, Atmosphere 2020, 11, 6, pp. 550-562, 2020.5
 村上周三,森川泰成:気温の影響を考慮した風環 境評価尺度に関する研究-日平均風速と日平均気温 に基づく適風,非適風環境の設定-,日本建築学会計 画系論文報告集,第 358 号, pp9-17, 1985.12

海洋-大気-波-堆積物結合モデル COAWST を用いた播磨灘の気象流動場の推定と再現性評価 Assessment of Reproducibility of Estimation of Meteorological Flow Field in Harimanada Using COAWST:Coupled-Ocean-Atmosphere-Wave-Sediment Transport Modeling System

○安賀 優人(大阪大学) PINTOS Andreoli Valentina(大阪大学) 嶋寺 光(大阪大学)
 古賀 佑太郎(兵庫県環境研究センター) 松尾 智仁(大阪大学) 近藤 明(大阪大学)

Hiroto YASUGA*1 PINTOS Andreoli Valentina*1 Hikari SHIMADERA*1

Yutaro KOGA*² Tomohito MATSUO*¹ Akira KONDO*¹

*¹Osaka University *²Hyogo Prefectural Institute of Environmental Sciences

Harimanada is in the eastern of the Seto Inland Sea, and it has been suggested that the reduction of nutrients in water negatively influences fishery. This study used the Coupled-Ocean-Atmosphere-Wave-Sediment Transport Modeling System

(COAWST) to simulate meteorological fields over Harimanada and evaluated the validity of simulated meteorological variables to be exchanged to the ocean and wave models. The model system successfully simulated the meteorological fields, such as temperature, humidity, wind speed, and rainfall, indicating that they can be used to predict and assess oceanographic fields in the study region.

はじめに

瀬戸内海は紀伊水道,豊後水道および関門海峡で外海 とつながる我が国最大の閉鎖性水域である。当海域では 1960年代の高度経済成長期には陸域からの栄養塩類(窒 素・リン)負荷の増大により水質が悪化し赤潮が頻発し た。そこで環境省が1978年に瀬戸内海環境保全特別措置 法で排水規制を行った結果, 1980 年代に溶存無機態窒素 (DIN) 濃度は大きく減少した。 一方, 1990 年代から瀬 戸内海東部の播磨灘においてイカナゴ類やイワシ類に代 表される漁獲量の減少も確認されている。 DIN をはじめ とする栄養塩は、海洋生物の餌である植物プランクトン の成長に必須である。そのため、栄養塩濃度の低下が、漁 獲量の減少につながっているとの指摘もある ¹⁾。そこで, 播磨灘東部海域に面する兵庫県では「豊かで美しい瀬戸 内海の再生」をかかげ、栄養塩類管理計画を策定している 2)。しかし、海域中の栄養塩類は、植物プランクトン等の 生態系に形態を変化させながら取り込まれるなど、複雑 に循環しているため、その動態については不明な部分が 多い。そのため、適切に栄養塩類を管理するための栄養塩 類量の動態解析が必要である。このような環境動態を予 測するためには数値モデルの利用が有効である。播磨灘 のような浅海域の海水流動は摩擦速度, 潜熱, 及び顕熱 フラックスなどが影響するなど)3大気環境と密接に相互 作用している。 そのため, 正確な海洋のシミュレーショ ンのためには、正確な気象場の再現が不可欠である。

そこで本研究では高解像度のシミュレーションが可能 である海洋-大気-波-堆積物結合モデル COAWST (Coupled-Ocean-Atmosphere-Wave-Sediment Transport Modeling System)を用いて播磨灘における栄養塩類の動 態解析を最終的な目標として、まずは気象の予測精度を 検証するため、COAWST 内の気象モデル WRF の再現性 の評価を行った。

1. モデル概要

COAWST の概要を Fig.1 に示す⁴⁾。気象場の計算には 気象モデル WRF (Weather Research and Forecasting model), 海洋場の計算には ROMS (Regional Ocean Modeling System),波浪場の計算には SWAN (Simulating WAves Nearshore)が用いられている。また、堆積物輸送モデルは ROMS に統合されている。そしてこれらのモデルがモデ ル結合ツールキットによって結合され、様々な変数が送 受信され計算が行われる。各モデル間で送受信される変 数を Table 1 に示す⁴。

Fig.1 Overview of COAWST and variables⁴⁾

Table I variable description in Fig. 1	Table 1	Variable	description	in Fig.1
--	---------	----------	-------------	----------

	Symbol	Explanation
WRF→ROMS	Tair	temperature
	RH	relative humidity
	Patm	atmospheric pressure
	U(V)wind	East-West(North-South) wind speed
	cloud	cloud ratio
	rain	Precipitation
	SW(LW)rad	short wave(long wave) net heat fluxes
WRF→SWAN	SW(LW)rad	short wave(long wave) net heat fluxes
ROMS→WRF	SST	sea surface temperature
ROMS→SWAN	U(V)s	East-West(North-South) surface currents
	η	free surface elevation
	depth	bathymetry
SWAN→WRF	Hwave	wave height
	Lwave	wave length
SWAN→ROMS	Hwave	wave height
	Lwave	wave length
	Dwave	wave direction
	Tsurf	surface periods
	Tbott	bottom periods
	Qb	percent wave breaking
	Wdissip	wave energy dissipation
	Ub	bottom orbital velocity

2. 計算条件

2.1 大気モデル

本研究では COAWST のバージョン 3.7 および WRF の バージョン 4.2.2 を使用した。

計算条件を Table 2 に示す。

Table 2 Calculation condition

	Item	Detail	
Horizontal grid (resolution)		219×179 (3 km)	
	Vertical grid	50	
	Timestep	20 s	
Initial and boundary condition		NCEP_CFSR (6h, 0.3°)	
Physics option			
1	Microphysics option	Morrison 2-moment sheme	
2	Cumulus option	no cumulus	
3	PBL option	YSU sheme	
4	Land-surface option	Noah LSM	
5	Radiation option	rrtmg sheme	

2.2 計算領域·計算期間

計算領域および観測地点(気象官署)の位置を Fig.2 に 示す。解析対象期間は 2010 年 10 月 1 日から 2010 年 10 月 30 日までとした。

2.3 計算項目

COAWST 内の気象モデル WRF によって計算された気 温(Tair),比湿(SH),東西風速(Uwind),南北風速(Vwind), 大気圧(Patm),降水量(rain),日射量(SWrad)を気象 観測月報⁶⁰より入手した観測値と時系列変化を比較し, 統計指標および空間分布についても検討を行うことによ ってモデルの再現性評価を行い,播磨灘周辺における気 象場の推定を行った。

Fig.2 Calculation domain and observation point

3. 結果および考察

Tair, SH, Uwind, Vwind, Patm, rain, SWrad の全観測地点 の平均値と計算値の計算領域全体の平均値の時系列変化 を Fig. 3, 4, 5, 6, 7, 8, 9 に示す。全期間の全観測地点におけ るそれらの観測値と計算値の平均値および統計指標を Table 3 に、また Emery らによる 統計指標のベンチマー クを Table 4 に示す⁵⁾。Fig.3 より気温が下がる夜間と, 前 線の影響で実際の気温が下がった降水があった期間(10/3, 10/8-10/9, 10/24-10/25)の日中はやや過大評価が見られ、 Table 4 の MBE のベンチマークを満たさない結果となっ た。しかし、モデル計算値は観測値の時間変動を捉え他の ベンチマークを満たし R が 0.9 と強い相関を示している ため、気温の推移をよく再現できているといえる。Fig. 4 より、 比湿のモデル計算値は 10/11-10/20 に過小評価が見 られたがおおむね観測値の時間変動を捉えている。また Table 3 および Table 4 より、すべてのベンチマークを満た しているため計算領域の湿度を良好に再現している。 Fig.5 および Fig.6 より東西風速および南北風速のモデル 計算値は観測値の時間変動を捉えている。また Table 3 お よび Table 4 より、風速はすべてのベンチマークを満たし ているため計算領域の風速を良好に再現している。Fig.7 より,大気圧の計算値は観測値の時間変動を捉えている。 Fig.8 より、計算値は降水イベントをよく再現しているが 大きな降水イベント中(10/3, 10/8-10/9)の降水量につい てはやや過小評価がみられた。Fig.9 より、日射量につい ては10/3や10/9などの雨天時も含めて正確に再現できて いることがわかる。このことから雲の割合の再現性につ いても良好であることがわかる。

Fig.3 Hourly time series of spatially averaged Tair

Fig.4 Hourly time series of spatially averaged SH

Fig.5 Hourly time series of spatially averaged Uwind

Fig.6 Hourly time series of spatially averaged Vwind

Fig.7 Hourly time series of spatially averaged Patm

Fig.8 Hourly time series of spatially averaged rain

Fig.9 Hourly time series of spatially averaged SWrad

全期間の気温および風速の空間分布をFig.10およびFig. 11に示す。Fig.10より、陸域では標高に応じて気温が低下 しているが、瀬戸内海や太平洋では気温がほぼ一定であ るなど、海上の気温分布の傾向をよく表現できている。 また、Fig.11より、陸域に比べて地表面粗度の小さい海上 では風速が大きくなっているなど、海上の風速の特徴を よく表現できている。また周囲を中国山地と四国山地に 囲まれている瀬戸内海は太平洋や日本海と比べ、風速が 小さくなっていることもわかる。

以上の結果より、COAWST 内の気象モデル WRF は気 象場をよく再現しており、海洋場を計算するために使用 される WRF の結果が信頼できるものであることが示さ れた。

	number of data	Observation mean	Calculated mean	R	MBE	MAE	RMSE	IA	
T_{air} [°C]	35486	19.0	19.8	0.90	0.78	1.51	1.93	0.94	
SH [g/kg]	35435	9.93	9.57	0.90	-0.36	0.89	1.17	0.94	
WS [m/s]	35483	2.52	2.87	0.63	0.34	1.19	1.61	0.78	
P _{atm} [hPa]	35492	1007.93	1007.31	0.97	-0.62	3.39	4.92	0.98	
rain [mm/h]	35408	0.19	0.18	0.27	-0.01	0.25	1.49	0.44	
SWrad [W/m ²]	11134	129.40	160.30	0.89	30.90	57.69	117.61	0.93	

Table 4 Benchmark of meteorological element⁵⁾

Meteorological element	Benchmark
Temperature	$ \text{MBE} < 0.5 \degree \text{C}$
	MAE < 2 °C
	IA > 0.8
SH	MBE < 1 g/kg
	MAE $< 2 \text{ g/kg}$
	IA > 0.6
Wind speed	MBE < 0.5 m/s
	RMSE < 2 m/s
	IA > 0.6

Fig.10 Spatial distribution of the estimated temperature in the domain

Fig.11 Spatial distribution of the estimated wind speed in the domain

4. 結論

本研究では、COAWST を用いた播磨灘周辺域における 気象場の推定および再現性評価を行った。その結果、以下 のような結論を得た。

- COAWST 内の気象モデル WRF から海洋モデル ROMS および波浪モデル SWAN に送信される気温, 湿度,風速,大気圧,降水量,日射量の時間変動お よび気温と風速の空間変動について精度よく計算 でき,海洋場の計算に使用できる可能性が示された。
- 2) COAWST 内の気象モデル WRF は瀬戸内海周辺の 気象場を良好に再現した。

参 考 文 献

- 山本民次,瀬戸内海の貧栄養化について(再考),日本マリンエンジニアリング学会誌,第49巻,第4号,2014.
- 2) 兵庫県栄養塩類管理計画~豊かで美しい里海を目指して~
 -兵庫県環境部

https://www.kankyo.pref.hyogo.lg.jp/jp/mizu_dojo/leg_249/22996 (accessed 11 February 2023) .

- 3)村上智一,川崎浩司,山口将人,水谷法美,気象場に支配される伊勢湾を対象とした大気-海洋-波浪結合モデルの精度検証,海洋開発論文集,第22巻,2006.
- John C. Warner, Brandy Armstrong, Ruoying He, Joseph B. Zambon, Development of a Coupled Ocean–Atmosphere–Wave– Sediment Transport (COAWST) Modeling System, Ocean Modelling 35, pp. 230–244, 2010.
- 5) Emery C., Tai E, Yarwood G. Enhanced Meteorological Modeling and Performance Evaluation for Two Texas Ozone Episodes, Prepared for The Texas Natural Resource Conservation Commission 12118 Park 35 Circle Austin, Texas 78753. 2001.
- 6) 一般財団法人 気象業務支援センター. 気象観測月報, http://www.jmbsc.or.jp/jp/offline/cd0061.html (accessed 13 February 2023)

モンテカルロ法を用いた食物連鎖モデルによる 播磨灘における窒素負荷量に対する生態系の応答性評価 Assessment of Ecosystem Response to Nitrogen Loading in the Harimanada Using Food Chain Model by Monte Carlo Method

○髙畠	知樹	(大阪大学)	古賀	佑太郎	(兵庫県環境研究センター)
嶋寺	光	(大阪大学)	松尾	智仁	(大阪大学)
近藤	明	(大阪大学)			

Tomoki TAKABATAKE*1 Yutaro KOGA*2 Hikari SHIMADERA*1 Tomohito MATSUO*1 Akira KONDO*1 *1 Osaka University *2 Hyogo Prefectural Institute of Environmental Sciences.

Harimanada, the eastern part of the Seto Inland Sea, has recently faced oligotrophication. As a countermeasure, operation controls are being carried out to increase the discharge of nutrients, including nitrogen, at sewage treatment plants. This study evaluated the response of ecosystems in Harimanada to nitrogen load from inflowing rivers by using a food chain model. The model well reproduced the concentration levels of total nitrogen, phytoplankton, and zooplankton in Harimanada in 2010s. Increasing nitrogen loading decreases the proportion of biomass of phytoplankton in response to increased nutrient in seawater; however, the composition of biomass remains unchanged, indicating that phytoplankton is the rate-determining step in the ecosystem of the Harima-nada.

はじめに

瀬戸内海では、高度経済成長期に富栄養化をはじめと する水質の悪化が進行したが、瀬戸内環境保全特別措置 法の制定以降は様々な対策によって水質が改善されてき た。一方で近年は、漁獲量の減少や海苔の品質低下などの 問題が発生しており、原因のひとつとして貧栄養化が挙 げられている¹⁾。その対策として、瀬戸内海東部の播磨灘 への流入河川流域では、下水処理場において栄養塩の放 流濃度を高める運転管理が実施されている。適正な栄養 塩供給を行うためには、栄養塩供給に対する水域生態系 の応答性を把握しておく必要がある。そこで本研究では 食物連鎖モデルを用いて、陸域からの窒素負荷量の変化 が播磨灘の生態系に及ぼす影響を評価した。

1. 生態系モデル

1.1 モデル概要

本研究では、佐藤ら²⁾が開発した NPZFF(N: 栄養塩, P: 植物プランクトン,Z: 動物プランクトン,F:魚(プ ランクトン食生魚及び魚食性魚)) モデル(Fig.1)を播磨 灘に適用した。佐藤らによる NPZFF モデルは1ボックス 型のモデルであるため、播磨灘に適用するにあたり、沿岸 と沖合を表現する2ボックス型のモデルに変更した。ま た、栄養塩については播磨灘が窒素制限の環境であるた め、一次生産の主な律速因子となる全窒素(TN)を対象と した。

Piscivorous)

 $-I_N$

1.2 モデル式
 モデル内では TN 濃度と各バイオマス濃度を(1) 式~
 (5) 式で表す。

$$\frac{dC_N}{dt} = L_N - O_N + DP_N + DZ_N + DF1_N + DF2_N \tag{1}$$

$$\frac{dM_p}{dt} = G_p - P_p - E_p - R_p - D_p - O_p + L_p$$
(2)

$$\frac{dM_z}{dt} = G_z - P_z - E_z - R_z - O_z + L_z$$
(3)

$$\frac{dM_{f1}}{dt} = G_{f1} - P_{f1} - E_{f1} - R_{f1} \tag{4}$$

$$\frac{dM_{f2}}{dt} = G_{f2} - E_{f2} - R_{f2} \tag{5}$$

ここで C_N は窒素濃度, I_N は植物プランクトンの窒素摂取 速度, DX_N は各バイオマス (XはP: 植物プランクトン, Z: 動物プランクトン, FI: プランクトン食性魚, F2: 魚 食性魚) 由来の窒素量 M_i は各バイオマス濃度, G_i は成長 量, P_i は捕食量, E_i は消滅量, R_i は呼吸及び死滅量, D_i は 沈着量, O_i は流出量, L_i は流入量, iは各栄養段階 (N: 栄養塩, P, Z, FI, F2) を表す。

2. 計算方法

2.1 計算手順

モデルパラメータは一意に定めることが困難であるた め、モンテカルロ法を用いたシミュレーションにより以 下の手順で設定した。

- STEP1: モデルパラメータを文献等から定めた幅の範 囲内でランダムに設定し,20年間の計算を行 う。
- STEP2:計算結果が以下の条件を満たす場合にそのモ デルを採用する。採用されなかった場合は STEP1に戻る。①計算された栄養塩濃度およ び各バイオマス濃度の平均値が2010年代の観 測値等から設定した範囲内にあること。(現況 再現条件)②10年目の栄養塩濃度および各バ イオマス濃度の変動係数(=標準偏差/平均 値)が0.2以下であること。(定常条件)
- STEP3:計算値を20年目の平均値に置き換える。その 後、栄養塩の流入負荷量を変化させて10年間 の計算を行うことで流入負荷量の変化に対す る栄養塩濃度および各バイオマス濃度の感度 を求める。
- STEP4: 1000 パターンの結果が得られるまで STEP1~ 3 を繰り返す。

パラメータセットの取得期間である10年は、本モデル による計算結果が定常状態に落ち着くまでに必要となる 期間を鑑みて決定した。変動係数が0.2以下というのは、 推移が概ね安定しているということの判断に使われる慣 用上の基準である。採用されたモデルについては、STEP3 で富栄養化・貧栄養化シナリオの解析を行ったのち、栄養 塩濃度および各バイオマス濃度の応答性をみた。陸域か らの負荷量は0.1倍から100倍までの20段階の変化倍率 で変化させた。本モデルのパラメータは、植物プランクト ンに関するものが10個、動物プランクトン、プランクト ン食生魚、魚食性魚に関するものがそれぞれ6個の計28 個ある。パラメータの例として、最大成長速度、死亡率な

どを採用している。2.2 計算条件

計算領域を Fig.2 に示す。赤線に囲まれた北部を沿岸, オレンジの線に囲まれた南部を沖合として以降扱う。 本モデルで採用した初期値を Table 1 に, インプットデ ータを Table 3 に示す。

Fig.2 Calculating area in Harimanada

Table 1 Initial conditions

Name	Unit	Coast	Offshore
Phytoplankton	gC/m ³	0.14	0.078
Zooplankton	gC/m ³	0.03	0.03
Planktivorous Fish	gC/m ³	0.07	0.07
Piscivorous Fish	gC/m ³	0.035	0.035
Nutrients	gN/m ³	0.18	0.17

Table 2 Model input data

Nama	I.I	Value		
Ivame	Unit	Coast	Offshore	
Volume	m ³	1.76×10 ¹⁰	6.45×10 ¹⁰	
Average Depth	m	22.5	29.6	
Production Layer Depth	m	17.3	19.4	
Inflow Load of TN from Land	gN/day	2.30×10^{7}	1.59×10 ⁵	
Inflow from Bisanseto to Harimanada	m ³ /day	3.29×10^{8}	1.70×10 ⁹	
Outflow from Harimanada to Bisanseto	m ³ /day	1.84×10^{8}	1.01×10 ⁹	
Inflow from Osaka Bay to Harimanada	m ³ /day	3.68×10^{8}	-	
Outflow from Harimanada to Osaka Bay	m ³ /day	4.77×10^{8}	-	
Inflow from Kii Channel to Harimanada	m ³ /day	-	2.55×10 ⁸	
Outflow from Harimanada to Kii Channel	m ³ /day	-	9.91×10 ⁸	
Inflow from Coast to Offshore	m ³ /day	-	1.08×10 ⁹	
Inflow from Offshore to Coast	m ³ /day	1.04×10 ⁹	-	

2.4 棄却条件

STEP2 で棄却条件として設定した各濃度について Table 3 に示す。STEP2 において現況再現計算を行ったと きに表の範囲に無い場合,そのモデルを採用せず改めて A-21

Nama	T In it	Coa	ast	Offshore	
Iname	Unit	Min	Max	Min	Max
Phytoplankton	gC/m ³	0.01	0.45	0.01	0.23
Zooplankton	gC/m ³	0.006	0.09	0.006	0.09
Planktivorous Fish	gC/m ³	0.01	0.25	0.001	0.25
Piscivorous Fish	gC/m ³	0.001	0.25	0.001	0.25
Nutrients	gN/m ³	0.1	0.4	0.1	0.4

3. 計算結果

3.1 現況再現計算

2010 年代で 1000 パターンの現況再現計算を行った結 果を Fig.3 に示す。沿岸の平均濃度がより高くなっている という状況を再現できているため、再現性が良いことが 分かった。

Fig.3 Simulation results, Observation is average from 2010 to 2019³).

3.2 陸域負荷変化計算結果

陸域からの負荷量を変化させた場合の栄養塩濃度およ び各バイオマス濃度の平均値を Fig.4 に, 窒素量で比較 した栄養塩濃度と各バイオマス濃度の構成比率の変化を Fig.5に、バイオマスのみの構成比率の変化をFig.6に示 す。負荷量を変化させたときに TN 濃度は線形の応答性 を示したが、あまり大きな変化は見られなかった。植物 プランクトンの陸域からの負荷量に対する感度は全窒素 よりさらに小さくなっていたが、負荷量が増えるにつれ 増加の変化率は減少していた。また、栄養段階が上位に なるにつれ増加率が減少していることがわかる。また、 特異な応答を示しているものとして、プランクトン食性 魚バイオマスがあげられる。沿岸沖合ともに同じような バイオマス濃度で応答を示している。魚食性魚のバイオ マス濃度については、沖合と沿岸の差が、プランクトン 食性魚よりも大きくなっていることが見て取れる。Fig.5 と Fig.6 をみると、バイオマスの構成比率は負荷量の影 響をあまり受けていないが、負荷量が増えたときのバイ オマス濃度の海水中の窒素の存在量に対する比率は、減 少している。

Fig.6 Biomass composition ratio

3.3 考察

として,隣接海域とのやり取りが定常であるため、流出したものの一部が再び流入することを再現できていないということ,および,底質に沈降した植物プランクトンはモデルから除去されることが原因として考えられる。このモデルでは、底質を考えていないため、底質からの湧出量の変化は考慮していない。改善のためには,隣接海域のモデル化により,負荷量の変化に対してやり取りをより正確に再現すること,モデルに底質を表現するボックスの追加が考えられる。植物プランクトンの増加率の減少については,(2)式における唯一の増殖項である成長量に起因すると考えられる。成長量は,(6)式で定義される。

$$G_p = g_p \cdot \left(1 - \frac{\gamma_{min,p}}{\gamma_p}\right) \cdot \exp\left(-\beta_p \cdot M_p\right) \cdot \frac{H_p}{H} \cdot M_p \tag{6}$$

ここでg_pが最大成長率, γ_pがN:C比, γ_{min}が最小N:C 比, β_pが混雑効果定数, H_pが補償水位, H が水深である。 バイオマス M_pが増加すると, 混雑効果を意味する exp(β_p·M_p)が小さくなり, 成長量が減少する。そのため, 増 殖が抑制されたと考えられる。また, 負荷量増加時にバイ オマスの構成比率は大きく変わらないが, 窒素比率がバ イオマス比率より大きくなるため, 播磨灘における食物 連鎖の律速段階が植物プランクトンであることが考えら れる。そのため, 播磨灘の生態系をコントロールするため には植物プランクトンのコントロールが必須である。

4.総括

以下に本研究の結果をまとめる。

- 栄養塩類の再現性を高めるため、沈降を再現するための底質を表現するボックスの追加や、隣接海域の モデル化によって改善が見込まれる。
- 植物プランクトンは、負荷量が増えるとバイオマス が増加する傾向にあったが、バイオマスが増加する と、増加率が減少した。この原因として植物プラン クトンは成長率が関係していると考えられる。
- 植物プランクトンが播磨灘の生態系の律速段階と判 明した。そのため、播磨灘の生態系をコントロール するためには植物プランクトンをコントロールする 必要がある。

参 考 文 献

- 漁獲量の推移及び変化の要因に係るこれまでの知見について、環境省、2023/01/20 参照、 https://www.env.go.jp/content/900530597.pdf
- 2) 佐藤祐一、早川和秀、栄養塩負荷の増減が琵琶湖の高次生 態系に与える影響:モンテカルロ法を用いた食物連鎖モデ ルによる解析、水環境学会誌、42、No. 4、pp. 133-143、2019
- 3) 広 域 総 合 調 査 、 環 境 省 、 https://waterpub.env.go.jp/water-pub/mizusite/mizu/kouiki/dataMap.asp

日本とアメリカ西海岸の沿岸都市における海風の影響を受けた気温分布の比較 Comparison of Air Temperature Distributions Affected by Sea Breezes in Coastal Cities in Japan and the U.S. West Coast

○山田健士朗(神戸大学) 竹林英樹(神戸大学) Kenshiro YAMADA*¹ Hideki TAKEBAYASHI*¹

In this study, air temperature distribution in Los Angeles, a city of similar size and urban distribution to Tokyo, where sea surface temperatures are lower than in Japan, was analyzed using a mesoscale Weather Research Forecast (WRF) model to examine the effects of incoming sea breeze wind speed and temperature on air temperature rise in the urban area in comparison with Tokyo. The hypothesis was that air temperature rise in Los Angeles would be larger than that in Tokyo, but in fact it was similar to that in Tokyo, indicating that sea surface temperature has little effect on air temperature rise.

1. はじめに

既往研究¹¹において,海風の影響を受けた沿岸都市の 気温分布は,市街地が十分に広い都市では,海岸からの 距離の1/2 乗に比例して上昇し,比例定数は都市によっ て異なるが,地表面からの顕熱が大きい場合,流入する 風速が小さい場合に大きくなると考察された.本研究で は,流入する海風の風速と温度が気温上昇に与える影響 を考察することを目的とし,海風の温度は低く,風速は 大きくなると考えられる,日本と比べて海面水温の低い ロサンゼルス地域を対象として,海岸からの距離と気温 上昇の関係を東京地域と比較して考察する.

2.メソ気象モデル WRF の概要と計算条件 2.1 メソ気象モデル WRF の概要

メソスケールの気象モデル WRF (Weather Research & Forecasting) は、米国大気研究センター (NCAR) などの 研究機関により開発された完全圧縮の非静力学モデルで、 支配方程式は、運動方程式、連続の式、ジオポテンシャル 式、温位保存式、スカラー保存式などで構成され、乾燥大 気の静水圧地形準拠座標(η座標)系によって記述され る.地表面付近の現象は、地表面過程と大気境界層過程に よって解かれ、下端境界条件が設定される.都市域には、

(1)都市形状を表現するストリートキャニオンのパラメ タリゼーション, (2)建物による影と建物間の相互放射,

(3) キャノピー層内の指数ウインドプロファイル,(4) 屋根面,壁面,道路面からの多層伝熱方程式を特徴とする 都市キャノピーモデル(UCM)を組み込むことで,建物に よって形成される地表面の凹凸の影響を考慮する.

2.2 計算条件

WRF version3.7.1-ARW を用いた.計算条件を表1に示 す.計算期間は2021年8月の10日間とした.計算対象 領域を図1に示す.ネスティング手法を用いDomain1,2 を設定した.考察対象領域はDomain2である.

都市キャノピーモデル(UCM)では、都市を3分類まで 設定することができる.そこで、土地利用データ(NLCD) に基づき、都市化の程度に応じて都市 A、B、C と分類し た.ロサンゼルス地域と東京地域の土地利用設定、考察対 象領域(黒の太枠)、連続する都市のメッシュ数を図2に 示し、両地域の海岸からの距離1km 毎の都市の土地利用 の頻度を図3に示す.また、土地利用分類別の物性値を 表2に、都市カテゴリーの設定値を表3に示す.

Calculation period		19-28,August,2021		
Vertical grid		28 layer (surface-100hPa)		
Horizontal grid		Domain1 : 3km (120×120grids)		
		Domain2 : 1km (103×103grids)		
Motolog	ical data	NCEP: final analysis		
Metolog	ical uata	(6 hourly,1 degree grid,17 layer)		
Geographical data		United States Geological Survey		
		(about 100×100 resolution)		
Microphisics process		Purdue Lin et al.scheme		
Dediction process	Long wave	RRTM Longwave scheme		
Radiation process	Short wave	Dudhia Shortwave scheme		
Planetary bound	ary layer process	Mellor-Yamada-Janijic PBL scheme		
Sumfana muanaa	Urban area	UCM (Urban Canopy Model)		
Surface process	Non urban area	Noah LSM		
Cumulus parametarization		None		
Four-dimensional data assimilation		None		

Table.1 Calculation condition

Fig.1 Calculation area

Tokyo area (3698)

Urban and Built-Up Land

Los Angeles area (3981)

Fig.2 Land use condition

Fig.3 Frequency of urban land use every 1 km away from coast

	DI · · 1			
Table.2	Physical	property	on each	land use
	2	1 1 2		

USGS			Evaporation efficiency	Emissivity	Roughness length	Thermal inertia
Land use code	Land use code Land use		[%]	[%]	[cm]	$[kJ/m^2 \cdot K \cdot s^{0.5}]$
1	Urban	15	10	88	80	1.26
2	Dry Cultivated Land	17	30	98.5	15	1.68
3	Irrigated Cultivated Land	18	50	98.5	10	1.68
7	Grassland	19	15	96	12	1.26
8	Shrubland	22	10	93	5	1.26
15	Mixed Forest	13	30	97	50	1.68
16	Water	8	100	98	0.01	2.52
17	Herbaceous Wetland	14	60	95	20	2.52
18	Wooden Wetland	14	35	95	40	2.1
19	Barren or Sparsely Vegetated	25	2	90	1	0.84

Table.3 Setting for urban canopy model

Urban category	Dimensionles s building height[-]	Building resistance coefficient[-]	Building volume parameters [m-1]	Roof surface evaporation efficiency[%]	Wall evaporatio n efficiency[%]	Ground surface evaporation efficiency%]	Anthropog enic heat [W/m ²]
Α	0.5	0.1	0.4	0	0	0	90
В	0.4	0.1	0.3	0	0	0	50
C	0.3	0.1	0.2	0	0	0	20

Urban category	Building height [m]	Roughness length of momentum on canyon[m]	Heat roughness length on the canyon[m]	0 surface displaceme nt height[m]	Sky factor (initial value)[%]	Building coverage[%]
А	10	1	1	2	48	50
В	7.5	0.75	0.75	1.5	56	50
С	5	0.5	0.5	1	62	50

3. 計算値と観測値の比較

数値計算に用いるメソ気象モデル WRF の計算結果を検 証した. 検証に用いた観測データは、アメリカの NCEI (National Centers for Environmental Information) のデータである.

3.1 晴天日・海風日の抽出

晴天日,海風日を定義し,観測値に基づき抽出した.晴 天日,海風日の定義を表4に示す.

3.2 精度検証

2021 年 8 月の晴天海風日に、ロサンゼルス地域の Domain2 (1km×1km メッシュ)内にある NCEI の観測値と 計算値の比較を行った.表5に各観測点の風速と気温の Bias, RMSE, Correlation を示す. 図4に風配図を示す.

風速,風向は、比較的良い精度で計算結果が得られた. 気温は,沿岸部で精度は良くないが,内陸部との関係の傾 向は再現している.計算値と観測値の差の主な原因は,海 面水温の再現性が低いことであると考察される. 夜間(21 時~8時)の気温は観測値との差が大きい.日中(9時~ 20時)の計算結果を解析対象とした.

Table .4 Definition of sunny day and sea breeze day

Sunny day						
	Mostly Sunny					
Weather	or					
	Sunny					
Sunshine	7.0 hours on mono					
hours	1.0 nours or more					
Total amount						
of	19[M/m ²] or more					
solar radiation						
Precipitation	0.5[mm] or more					

		Sea breeze day				
-	wind speed	2.0[m/s] or more				
		wind direction	Each region's main 2 wind direction			
	hour	The time that satisfies the above two conditions is 6 hours or more per day after 12 o'clock				

Table .5 Bias, RMSE, Correlation of air temperature and wind speed

Temperature	Bias[°C]	RMSE[°C]	Correlation	Wind speed	Bias[m/s]	RMSE[m/s]	Correlation
Los Angeles International Airport	2.61	2.73	0.72	Los Angeles International Airport	-0.43	0.80	0.82
Cable	0.88	1.51	0.96	Cable	0.96	1.84	0.75

Fig.4 Wind Rose

4. 気温分布の分析

海面水温に注目して海岸からの距離と気温分布の関係 を分析した.東京地域は2010年8月における晴天海風日 の日中(9-20時),ロサンゼルス地域は2021年8月にお ける晴天海風日の日中(9-20時)の計算結果を用いた.

4.1 海岸からの距離と気温分布

晴天海風日における海岸からの距離と14時の気温(地上2m)の関係を図5に示す.著しく気温の低い地域が存在する.近似曲線はその地域を除いた値で作成した.著しく気温が低い理由は、地域の北側に山脈があり、標高が高いためである.図5の近似曲線を抜粋して図6に、さらに近似曲線のy切片を0にした海岸からの距離と気温上昇の関係を図7に示す.各日の14時の気温分布を図8に示す.

ロサンゼルス地域においても海岸からの距離とともに 気温が上昇する傾向が確認された.22日,23日は上昇傾 向が小さく,25日,27日と順に大きくなる.以降では, 23日,25日,27日を対象として考察した.

Fig.6 Relationship between distance from the coast and air temperature

Fig.5 Relationship between distance from coast and air temperature

Fig.8 Air temperature distribution in Los Angeles area at 14:00 (from the left: on Aug. 22, Aug. 23, Aug. 25, Aug. 27)

4.2 海面水温と気温上昇の関係

東京地域とロサンゼルス地域における晴天海風日の海 岸からの距離と気温上昇の関係を図9に示す.東京地域 は晴天海風日の平均,ロサンゼルス地域は23日,25日, 27日を示す.

気温上昇の傾きは、25日、27日は東京地域よりロサン ゼルス地域が大きいが、23日は東京地域と同程度である.

東京地域とロサンゼルス地域において, 海表面温度 SST, 都市表面温度 Tu, 海風の風速 U, 温度 Ta, 地表面からの 顕熱流束 H, 海岸からの距離 x と気温上昇 Δ T の傾きの関 係を考察した(表 6,式 1,式 2).都市表面温度と海風の 温度の差 Tu-Ta が大きくなると, U と H がともに大きく なり, 東京地域とロサンゼルス地域では, 海表面温度が大 きく異なるにも関わらず, 気温上昇の傾きにあまり差が 生じないと考察された.

$$\Delta T = (0.0032 \sim 0.0045) \sqrt{H/U} \sqrt{x}$$
(1)
$$H = f(U, T_u - T_a)$$
(2)

ΔT: Air temperature rise

H : Sensible heat from surface to air

- U: Wind velocity of sea breeze
- x : Distance from coast

Tu: Urban surface temperature

Ta: Air temperature of sea breeze

5. 結論

本研究では、流入する海風の風速と温度が気温上昇に 与える影響を考察することを目的とし、日本と比べて海 面水温の低いロサンゼルス地域を対象として、海岸から の距離と気温上昇の関係を東京地域と比較して考察した.

都市表面温度と海風の温度の差が大きくなると,海風 の風速と地表面からの顕熱がともに大きくなり,海表面 温度が大きく異なる東京地域とロサンゼルス地域の気温 上昇の傾きにあまり差が生じないと考察された.

参考文献

1) H. Takebayashi, et al., Relationship between City Size, Coastal Land Use, and Summer Daytime Air Temperature Rise with Distance from Coast, Climate 2018, 6(4), 84.

 Table .6 Sea surface temperature (SST), Urban surface temperature (Tu), Wind velocity of sea breeze (U), Air temperature of sea breeze (Ta), Temperature difference between surface and air (Tu-Ta) of Tokyo

and Los Angeles area

6								
		$SST(^{\circ}C)$	$Tu(^{\circ}\!C)$	U(m/s)	Ta(°C)	$Tu-Ta(^{\circ}C)$		
Tokyo area	Average	26.5	44.5	4.7	27.7	16.8		
	23th	22.2	35.8	5.3	21.2	14.6		
LA area	25th	22.2	39.9	4.9	24.2	15.7		
	27th	22.2	42.3	4.7	25.7	16.6		